A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This paper describes two phenotyping methods without the use of epidermal peels to characterize the genes controlling stomatal development. The first method demonstrates how to analyze a stomatal phenotype using a toluidine blue O-stained plant epidermis. The second method describes how to identify stomatal ligands and monitor their biological activities.
Stomata are small pores on the surface of land plants that are involved in gas exchange and water vapor release, and their function is critical for plant productivity and survival. As such, understanding the mechanisms by which stomata develop and pattern has tremendous agronomic value. This paper describes two phenotypic methods using Arabidopsis cotyledons that can be used to characterize the genes controlling stomatal development and patterning. Presented first are procedures for analyzing the stomatal phenotypes using toluidine blue O-stained cotyledons. This method is fast and reliable and does not require the use of epidermal peels, which are widely used for phenotypic analyses but require specialized training. Due to the presence of multiple cysteine residues, the identification and generation of bioactive EPF peptides that have a role in stomatal development have been challenging. Thus, presented second is a procedure used to identify stomatal ligands and monitor their biological activity by bioassays. The main advantage of this method is that it produces reproducible data relatively easily while reducing the amount of peptide solution and the time required to characterize the role of the peptides in controlling stomatal patterning and development. Overall, these well-designed protocols enhance the efficiency of studying the potential stomatal regulators, including cysteine-rich secretory peptides, which require highly complex structures for their activity.
Proper patterning and differentiation of the plant stomata are critical for their function in two fundamental biological processes, photosynthesis and transpiration, and are enforced by EPF peptide signaling pathways. In Arabidopsis, three secreted cysteine-rich peptides, EPF1, EPF2, and STOMAGEN/EPFL9, control different aspects of stomatal development and are perceived by cell-surface receptor components, including ERECTA-family receptor kinases (ER, ERL1, and ERL2), SERKs, and TMM1,2,3,4,5,<....
1. Staining Arabidopsis cotyledons with TBO
Various stomatal transgenic plants and mutants known to have less or more stomatal density and clustering (epf22,5, epf1 epf22,5, tmm12, a STOMAGEN-silenced line4, and transgenic lines carrying the estradiol-inducible Est::EPF1 or Est::EPF2 overexpression construct7) were used to d.......
The two phenotypic analysis methods for identifying and characterizing the genes controlling stomatal patterning and differentiation presented here are convenient and reliable assays since the protocols do not require the use of epidermal peels and specialized equipment (which are time-consuming and require special training for sample preparation) but do produce high-quality images for the quantitative analysis of epidermal phenotypes.
A limitation of this technique for phenotypic analysis usi.......
This research was funded through the Natural Resources and Engineering Research Council of Canada (NSERC) Discovery program and Concordia University. K.B. is supported by the National Overseas Scholarship from India.
....Name | Company | Catalog Number | Comments |
18 mm x 18 mm cover slip | VWR | 16004-326 | |
24-well sterile plates with lid | VWR | CA62406-183 | |
3M Micropore surgical tape | Fisher Scientific | 19-027-761 | Microporous surgical paper tape used to seal MS plates |
76 x 26 mm Microscope slide | TLG | GEW90-2575-03 | |
Acetic acid, ≥99.8% | Fisher Scientific | A38-212 | |
Agar | BioShop | AGR001.1 | |
Bleech | Household bleach (e.g., Clorox) | ||
Confocal microscope | Nikon | Nikon C2 operated by NIS-Elements | |
Ethanol | Greenfield | P210EAAN | |
FIJI | Open-srouce | (Fiji Is Just) ImageJ v2.1/1.5.3j | Downloaded from https://imagej.net/software/fiji/ |
Forceps | Sigma-Aldrich | F6521Â | |
Gamborg's vitamin mixture | Cassson Labs | GBL01-100ML | Store at 4 °C |
Glycerol | Fisher Scientific | G33-4 | |
Growth chambers | Conviron, model E15 | 16h light cycle, set at 21°C with a light intensity of 120 µmol·m-2·s-1. | |
Lights | HD Supply | 25272 | Fluorescent lights in growth chambers, Sylvania F72T12/CW/VHO 72"T12 VHO 4200K |
Microcentrifuge tube | Fisher Scientific | 14-222-155 | Tubes in which Arabidopsis thaliana seeds are placed to perform sterilization |
Microscope | Nikon | Nikon Eclipse TiE equipped with a DsRi2 digital camera | |
Murashige and Skoog basal salts | Cassson Labs | MSP01-1LT | Store at 4 °C |
Petri Dish 100 mm x 20 mm | Fisher Scientific | 08-757-11Z | Petri dishes in which MS media is poured for the purpose of growing Arabidopsis thaliana |
Propidium Iodide | VWR | 39139-064 | |
Scalpel | Fisher Scientific | 08-916-5A | |
Sucrose | BioShop | SUC700.5 | |
Toluidine blue O | Sigma-Aldrich | T3260-5G | |
Tris base | Sigma-Aldrich | T1503 | |
Triton X-100 | Sigma-Aldrich | T8787-100ML | |
β-Estradiol | Sigma-Aldrich | E2758 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved