Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The goal of this protocol is to establish an orofacial muscle fibrosis model. Comparison of the histology between mice masseter and tibialis anterior muscle after freezing injury confirmed masseter muscle fibrosis. This model will facilitate further investigation into the mechanism underlying orofacial muscle fibrosis.

Abstract

Orofacial muscle constitutes a subset of skeletal muscle tissue, with a distinct evolutionary trajectory and development origin. Unlike the somite-derived limb muscles, the orofacial muscles originate from the branchial arches, with exclusive contributions from the cranial neural crest. A recent study has revealed that regeneration is also different in the orofacial muscle group. However, the underlying regulatory mechanism remains to be uncovered. Current skeletal muscle regeneration models mainly focus on the limb and trunk muscle. In this protocol, dry ice was used to induce freezing injury in the mouse masseter muscle and tibialis anterior muscle to create an orofacial muscle fibrosis model. The temporal dynamics of muscle satellite cells and fibro-adipogenic progenitors were different between the two muscles, leading to impaired myofiber regeneration and excessive extracellular matrix deposition. With the help of this model, a deeper investigation into muscle regeneration in the orofacial area could be carried out to develop therapeutic approaches for patients with orofacial diseases.

Introduction

Orofacial muscles are critical in daily physiological activities such as mastication, speech, respiration, and facial expression1. In congenital orofacial deformities, however, these muscles exhibit atrophic and fibrotic alterations, leading to impaired body health and social cognition2. Facial reconstructive surgery remains the first-line treatment, but up to 30-70% of postoperative patients still suffer from muscle loss and muscle dysfunction3,4 The failure of orofacial muscle regeneration has been attributed to intrinsic factors, which cannot be corrected by s....

Protocol

All animal procedures in this study were reviewed and approved by the Ethical Committee of the West China School of Stomatology, Sichuan University (WCHSIRB-D-2020-114). Male C57BL/6 mice (5 weeks old) were raised in a humidity-controlled (53 ± 2%) and temperature-controlled (23 ± 2 °C) facility and were on a 12 h light/dark cycle. See Table of Materials for details related to all materials, reagents, and instruments used in this protocol.

1. Freezing inju.......

Representative Results

HE and Sirius Red staining (Figure 4 and Supplemental Figure S1) revealed complete muscle regeneration of TA in this freezing-injury model. In contrast, MAS exhibited impaired myofiber regeneration and excessive extracellular matrix deposition. The histology of intact MAS and TA muscle is shown in Figure 4A,B, where myofibers are in alignment and the fibrotic area only appeared in the interstitial space and amon.......

Discussion

There are a variety of injury models for studying skeletal muscle regeneration, including the use of physical, chemical, and surgical stimuli10,11,12,13,14,15,16. Cardiotoxin and barium chloride are the two most widely used chemicals to initiate muscle regeneration10<.......

Disclosures

The authors have no conflicts of interest to disclose.

Acknowledgements

This study was supported by grants from the Sichuan Provincial Health and Wellness Committee (Grant Number: 21PJ063) and the National Natural Science Foundation of China (Grant Number: 82001031).

....

Materials

NameCompanyCatalog NumberComments
1 mL syringeShifeng Medical Apparatus and Instrument (Chengdu, Sichuan, China)1-ml syringe/
AcetoneChron ChemicalsAceton/
Adhesion microscope slidesCitotest Scientific188105/
Animal depilatoryPhygene ScientificPH1877/
BSA (bovine serum albumin)Solarbio Life SciencesA8010/
DAPISolarbio Life SciencesC0065/
Donkey anti-goat Alexa Fluor 488Abcamab1501291:200
donkey serumSolarbio Life SciencesSL050/
Dry IceSinrro Technology (Chengdu, Sichuan, China)rice-shaped dry ice/
IFKine Red Donkey anti-rabbitAbbkine Scientific CompanyA244211:200
Insulation barrels (big)ThermosD600/
Insulation barrels (small)Polar Ware250B/
IsofluraneRWD Life Technology Company (Shenzhen, Guangdong, China)R510-22/
IsopentaneMACKLINM813375/
LamininSigma-AldrichL93931:1000
Liquid nitrogenSinrro Technology (Chengdu, Sichuan, China)//
M.O.M kitVector LaboratoriesBMK-2202
Mice  Dashuo Biological Technology Company(Chengdu, Sichuan, China)5 weeks old/
mounting mediumSolarbio Life SciencesS2100/
Nertral balsamSolarbio Life SciencesG8590/
Pax7Developmental Studies Hybridoma Bank Pax71:5
PdgfraR&D systemsAF10621:40
Sirus Red Staining KitSolarbio Life SciencesG1472/
Surgical instruments (forceps, scissors, needle holder, scalpel, and suture)Zhuoyue Medical Instrument (Suqian, Jiangsu, China)//
Tissue-tek OCTSakura4583/
TritonShanghai Scigrace BiotechABIO-Biofroxx-0006A/
ZoletilVirbacZoletil 50/

References

  1. Yoshioka, K., Kitajima, Y., Seko, D., Tsuchiya, Y., Ono, Y. The body region specificity in murine models of muscle regeneration and atrophy. Acta Physiologica. 231 (1), e13553 (2021).
  2. Worley, M. L., Patel, K. G., Kilpatrick, L. A. Cleft lip and palate.....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Orofacial MuscleSkeletal MuscleMuscle RegenerationFreezing InjuryFibrosis ModelMasseter MuscleTibialis Anterior MuscleSatellite CellsFibro adipogenic ProgenitorsExtracellular Matrix

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved