Bu içeriği görüntülemek için JoVE aboneliği gereklidir. Oturum açın veya ücretsiz deneme sürümünü başlatın.
DeepOmicsAE, çoklu omik verilerin boyutluluğunu azaltmak için bir derin öğrenme yönteminin (yani bir otomatik kodlayıcı) uygulanmasına odaklanan bir iş akışıdır ve birden çok omik veri katmanını temsil eden tahmine dayalı modeller ve sinyal modülleri için bir temel sağlar.
Büyük omik veri kümeleri, insan sağlığına yönelik araştırmalar için giderek daha fazla kullanılabilir hale geliyor. Bu makale, proteomik, metabolomik ve klinik veriler dahil olmak üzere çoklu omik veri kümelerinin analizi için optimize edilmiş bir iş akışı olan DeepOmicsAE'yi sunmaktadır. Bu iş akışı, yüksek boyutlu çoklu omik girdi verilerinden kısa bir dizi özellik çıkarmak için otomatik kodlayıcı adı verilen bir tür sinir ağı kullanır. Ayrıca iş akışı, otomatik kodlayıcıyı uygulamak için gereken temel parametreleri optimize etmek için bir yöntem sağlar. Bu iş akışını sergilemek için, sağlıklı veya Alzheimer hastalığı teşhisi konmuş 142 kişiden oluşan bir kohorttan klinik veriler, ölüm sonrası beyin örneklerinin proteomu ve metabolomu ile birlikte analiz edildi. Otomatik kodlayıcının gizli katmanından çıkarılan özellikler, sağlıklı ve hastalıklı hastaları ayıran biyolojik bilgiyi korur. Ek olarak, bireysel ekstrakte edilen özellikler, her biri bireylerin klinik özellikleriyle benzersiz bir şekilde etkileşime giren ve proteomik, metabolomik ve klinik verileri entegre etmek için bir araç sağlayan farklı moleküler sinyal modüllerini temsil eder.
Nüfusun giderek daha büyük bir kısmı yaşlanıyor ve nörodejenerasyon gibi yaşa bağlı hastalıkların yükünün önümüzdeki yıllarda keskin bir şekilde artması bekleniyor1. Alzheimer hastalığı en sık görülen nörodejeneratif hastalık türüdür2. Hastalığın başlangıcını ve ilerlemesini yönlendiren temel moleküler mekanizmaları yeterince anlamadığımız göz önüne alındığında, bir tedavi bulmadaki ilerleme yavaş olmuştur. Alzheimer hastalığı ile ilgili bilgilerin çoğu, nedenleri ve sonuçları ayırt etmeyi zor bir görev haline getiren beyin dokusunun incelenmesinden ölüm sonrası elde edilir3. Dini Tarikatlar Çalış....
NOT: Burada kullanılan veriler, AD Bilgi portalından indirilen ROSMAP verileridir. Verileri indirmek ve yeniden kullanmak için bilgilendirilmiş onay gerekli değildir. Burada sunulan protokol, çoklu omik verileri analiz etmek ve örneğin teşhislerine dayalı olarak belirli hasta veya numune gruplarını ayırt eden sinyal modüllerini tanımlamak için derin öğrenmeyi kullanır. Protokol ayrıca, orijinal büyük ölçekli verileri özetleyen ve makine öğrenimi algoritmalarını kullanarak tahmine dayalı bir modeli eğitmek gibi daha fazla analiz için kullanılabilen küçük bir dizi çıkarılmış özellik sunar (Şekil 1). Protokolü gerçekleştirmeden önce koda eri....
Protokolü sergilemek için, sağlıklı veya Alzheimer hastalığı teşhisi konmuş 142 bireyin postmortem beyinlerinden elde edilen proteom, metabolom ve klinik bilgileri içeren bir veri setini analiz ettik.
Verileri ön işlemek için protokol bölüm 1'i gerçekleştirdikten sonra, veri seti 6.497 protein, 443 metabolit ve üç klinik özellik (cinsiyet, ölüm yaşı ve eğitim) içeriyordu. Hedef özellik, kogdx olarak kodlanmış, kogdx olarak kodlanm.......
Veri kümesinin yapısı, protokolün başarısı için kritik öneme sahiptir ve dikkatlice kontrol edilmelidir. Veriler, protokol bölüm 1'de belirtildiği gibi biçimlendirilmelidir. Sütun konumlarının doğru atanması da yöntemin başarısı için kritik öneme sahiptir. Proteomik ve metabolomik veriler farklı şekilde önceden işlenir ve verilerin farklı doğası nedeniyle özellik seçimi ayrı ayrı yapılır. Bu nedenle, protokol adımları 1.5, 2.3 ve 3.3'te sütun konumlarını doğru bir şekilde atama.......
Yazar, herhangi bir çıkar çatışması olmadığını beyan eder.
Bu çalışma, NIH hibe CA201402 ve Cornell Omurgalı Genomik Merkezi (CVG) Seçkin Bilim Adamı Ödülü tarafından desteklenmiştir. Burada yayınlanan sonuçlar tamamen veya kısmen AD Bilgi Portalı'ndan (https://adknowledgeportal.org) elde edilen verilere dayanmaktadır. Çalışma verileri, Rush Alzheimer Hastalığı Merkezi, Rush Üniversitesi Tıp Merkezi, Chicago tarafından sağlanan örneklere dayanarak AD için Hızlandırıcı Tıp Ortaklığı (U01AG046161 ve U01AG061357) aracılığıyla sağlandı. Veri toplama, NIA hibeleri P30AG10161, R01AG15819, R01AG17917, R01AG30146, R01AG36836, U01AG32984, U01AG46152, Illinois Halk Sağlığı Departmanı ve Translasyonel Genomik Araştırma Enstitüsü tarafın....
Name | Company | Catalog Number | Comments |
Computer | Apple | Mac Studio | Apple M1 Ultra with 20-core CPU, 48-core GPU, 32-core Neural Engine; 64 GB unified memory |
Conda v23.3.1 | Anaconda, Inc. | N/A | package management system and environment manager |
conda environment DeepOmicsAE | N/A | DeepOmicsAE_env.yml | contains packages necessary to run the worflow |
github repository DeepOmicsAE | Microsoft | https://github.com/elepan84/DeepOmicsAE/ | provides scripts, Jupyter notebooks, and the conda environment file |
Jupyter notebook v6.5.4 | Project Jupyter | N/A | a platform for interactive data science and scientific computing |
DT01-metabolomics data | N/A | ROSMAP_Metabolon_HD4_Brain 514_assay_data.csv | This data was used to generate the Results reported in the article. Specifically, DT01-DT04 were merged by matching them based on the individualID. The column final consensus diagnosis (cogdx) was filtered to keep only patients classified as healthy or AD. Climnical features were filtered to keep the following: age at death, sex and education. Finally, age reported as 90+ was set to 91, then the age column was transformed to float64. The data is available at https://adknowledgeportal.synapse.org |
DT02-TMT proteomics data | N/A | C2.median_polish_corrected_log2 (abundanceRatioCenteredOn MedianOfBatchMediansPer Protein)-8817x400.csv | |
DT03-clinical data | N/A | ROSMAP_clinical.csv | |
DT04-biospecimen metadata | N/A | ROSMAP_biospecimen_metadata .csv | |
Python 3.11.3 | Python Software Foundation | N/A | programming language |
Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi
Izin talebiThis article has been published
Video Coming Soon
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır