Oturum Aç

Bu içeriği görüntülemek için JoVE aboneliği gereklidir. Oturum açın veya ücretsiz deneme sürümünü başlatın.

Bu Makalede

  • Özet
  • Özet
  • Giriş
  • Protokol
  • Temsili Sonuçlar
  • Tartışmalar
  • Açıklamalar
  • Teşekkürler
  • Malzemeler
  • Referanslar
  • Yeniden Basımlar ve İzinler

Özet

DeepOmicsAE, çoklu omik verilerin boyutluluğunu azaltmak için bir derin öğrenme yönteminin (yani bir otomatik kodlayıcı) uygulanmasına odaklanan bir iş akışıdır ve birden çok omik veri katmanını temsil eden tahmine dayalı modeller ve sinyal modülleri için bir temel sağlar.

Özet

Büyük omik veri kümeleri, insan sağlığına yönelik araştırmalar için giderek daha fazla kullanılabilir hale geliyor. Bu makale, proteomik, metabolomik ve klinik veriler dahil olmak üzere çoklu omik veri kümelerinin analizi için optimize edilmiş bir iş akışı olan DeepOmicsAE'yi sunmaktadır. Bu iş akışı, yüksek boyutlu çoklu omik girdi verilerinden kısa bir dizi özellik çıkarmak için otomatik kodlayıcı adı verilen bir tür sinir ağı kullanır. Ayrıca iş akışı, otomatik kodlayıcıyı uygulamak için gereken temel parametreleri optimize etmek için bir yöntem sağlar. Bu iş akışını sergilemek için, sağlıklı veya Alzheimer hastalığı teşhisi konmuş 142 kişiden oluşan bir kohorttan klinik veriler, ölüm sonrası beyin örneklerinin proteomu ve metabolomu ile birlikte analiz edildi. Otomatik kodlayıcının gizli katmanından çıkarılan özellikler, sağlıklı ve hastalıklı hastaları ayıran biyolojik bilgiyi korur. Ek olarak, bireysel ekstrakte edilen özellikler, her biri bireylerin klinik özellikleriyle benzersiz bir şekilde etkileşime giren ve proteomik, metabolomik ve klinik verileri entegre etmek için bir araç sağlayan farklı moleküler sinyal modüllerini temsil eder.

Giriş

Nüfusun giderek daha büyük bir kısmı yaşlanıyor ve nörodejenerasyon gibi yaşa bağlı hastalıkların yükünün önümüzdeki yıllarda keskin bir şekilde artması bekleniyor1. Alzheimer hastalığı en sık görülen nörodejeneratif hastalık türüdür2. Hastalığın başlangıcını ve ilerlemesini yönlendiren temel moleküler mekanizmaları yeterince anlamadığımız göz önüne alındığında, bir tedavi bulmadaki ilerleme yavaş olmuştur. Alzheimer hastalığı ile ilgili bilgilerin çoğu, nedenleri ve sonuçları ayırt etmeyi zor bir görev haline getiren beyin dokusunun incelenmesinden ölüm sonrası elde edilir3. Dini Tarikatlar Çalış....

Protokol

NOT: Burada kullanılan veriler, AD Bilgi portalından indirilen ROSMAP verileridir. Verileri indirmek ve yeniden kullanmak için bilgilendirilmiş onay gerekli değildir. Burada sunulan protokol, çoklu omik verileri analiz etmek ve örneğin teşhislerine dayalı olarak belirli hasta veya numune gruplarını ayırt eden sinyal modüllerini tanımlamak için derin öğrenmeyi kullanır. Protokol ayrıca, orijinal büyük ölçekli verileri özetleyen ve makine öğrenimi algoritmalarını kullanarak tahmine dayalı bir modeli eğitmek gibi daha fazla analiz için kullanılabilen küçük bir dizi çıkarılmış özellik sunar (Şekil 1). Protokolü gerçekleştirmeden önce koda eri....

Temsili Sonuçlar

Protokolü sergilemek için, sağlıklı veya Alzheimer hastalığı teşhisi konmuş 142 bireyin postmortem beyinlerinden elde edilen proteom, metabolom ve klinik bilgileri içeren bir veri setini analiz ettik.

Verileri ön işlemek için protokol bölüm 1'i gerçekleştirdikten sonra, veri seti 6.497 protein, 443 metabolit ve üç klinik özellik (cinsiyet, ölüm yaşı ve eğitim) içeriyordu. Hedef özellik, kogdx olarak kodlanmış, kogdx olarak kodlanm.......

Tartışmalar

Veri kümesinin yapısı, protokolün başarısı için kritik öneme sahiptir ve dikkatlice kontrol edilmelidir. Veriler, protokol bölüm 1'de belirtildiği gibi biçimlendirilmelidir. Sütun konumlarının doğru atanması da yöntemin başarısı için kritik öneme sahiptir. Proteomik ve metabolomik veriler farklı şekilde önceden işlenir ve verilerin farklı doğası nedeniyle özellik seçimi ayrı ayrı yapılır. Bu nedenle, protokol adımları 1.5, 2.3 ve 3.3'te sütun konumlarını doğru bir şekilde atama.......

Açıklamalar

Yazar, herhangi bir çıkar çatışması olmadığını beyan eder.

Teşekkürler

Bu çalışma, NIH hibe CA201402 ve Cornell Omurgalı Genomik Merkezi (CVG) Seçkin Bilim Adamı Ödülü tarafından desteklenmiştir. Burada yayınlanan sonuçlar tamamen veya kısmen AD Bilgi Portalı'ndan (https://adknowledgeportal.org) elde edilen verilere dayanmaktadır. Çalışma verileri, Rush Alzheimer Hastalığı Merkezi, Rush Üniversitesi Tıp Merkezi, Chicago tarafından sağlanan örneklere dayanarak AD için Hızlandırıcı Tıp Ortaklığı (U01AG046161 ve U01AG061357) aracılığıyla sağlandı. Veri toplama, NIA hibeleri P30AG10161, R01AG15819, R01AG17917, R01AG30146, R01AG36836, U01AG32984, U01AG46152, Illinois Halk Sağlığı Departmanı ve Translasyonel Genomik Araştırma Enstitüsü tarafın....

Malzemeler

NameCompanyCatalog NumberComments
ComputerAppleMac StudioApple M1 Ultra with 20-core CPU, 48-core GPU, 32-core Neural Engine; 64 GB unified memory
Conda v23.3.1Anaconda, Inc.N/Apackage management system and environment manager
conda environment
DeepOmicsAE
N/ADeepOmicsAE_env.ymlcontains packages necessary to run the worflow
github repository DeepOmicsAEMicrosofthttps://github.com/elepan84/DeepOmicsAE/provides scripts, Jupyter notebooks, and the conda environment file
Jupyter notebook v6.5.4Project JupyterN/Aa platform for interactive data science and scientific computing
DT01-metabolomics dataN/AROSMAP_Metabolon_HD4_Brain
514_assay_data.csv
This data was used to generate the Results reported in the article. Specifically, DT01-DT04 were merged by matching them based on the individualID. The column final consensus diagnosis (cogdx) was filtered to keep only patients classified as healthy or AD. Climnical features were filtered to keep the following: age at death, sex and education. Finally, age reported as 90+ was set to 91, then the age column was transformed to float64.
The data is available at https://adknowledgeportal.synapse.org
DT02-TMT proteomics dataN/AC2.median_polish_corrected_log2
(abundanceRatioCenteredOn
MedianOfBatchMediansPer
Protein)-8817x400.csv
DT03-clinical dataN/AROSMAP_clinical.csv
DT04-biospecimen metadataN/AROSMAP_biospecimen_metadata
.csv
Python 3.11.3 Python Software FoundationN/Aprogramming language

Referanslar

  1. Hou, Y., et al. Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology. 15 (10), 565-581 (2019).
  2. Scheltens, P., et al. Alzheimer’s disease. The Lancet. 397 (10284), 1577-1590 (2021).
  3. Brei....

Yeniden Basımlar ve İzinler

Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi

Izin talebi

Daha Fazla Makale Keşfet

BiyolojiSay 202

This article has been published

Video Coming Soon

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır