JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biology

Organ Culture System for Assessing the Toxicity of Intraocular Treatment Excipients and Pharmaceuticals

Published: January 7th, 2022

DOI:

10.3791/63176

1School of Optometry and Vision Science, University of Waterloo, 2Centre for Ocular Research & Education, School of Optometry and Vision Science, University of Waterloo, 3Tonomed Inc

As the leading cause of blindness, cataracts are a significant burden for the tens of millions of people affected globally by this condition. Chemical exposures, among other environmental factors, are an established cause of cataracts. Ocular toxicity testing can assess whether pharmaceuticals and their components may contribute to lens damage that may lead to cataracts or aid the treatment of cataracts.

In vitro studies and in vivo animal testing can be used for assessing the safety of chemicals prior to clinical studies. The Draize test-the current in vivo standard for ocular toxicity and irritancy testing-has been criticized for lack of sensitivity and objective measurements of determining ocular toxicity. In vitro cell-based assays are limited as cell cultures cannot appropriately model an intact functional lens.

The method described here is a sensitive in vitro alternative to animal testing, designed to evaluate the response of the intact bovine lens to treatment at both the cellular activity level and for overall refractive performance. The non-toxic reagent resazurin is metabolized in proportion to the level of cell activity. The lens laser-scanner assay measures the ability of the lens to refract incident beams of light to a single point with minimal error, directly relevant to its natural function. The method may be used to determine both acute and delayed changes in the lens, as well as the recovery of the lens from chemical or environmental exposures.

Tags

Organ Culture System

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved