JoVE Logo
Faculty Resource Center

Sign In

Precise Electrochemical Sizing of Individual Electro-Inactive Particles

DOI :

10.3791/65116-v

5:03 min

August 4th, 2023

August 4th, 2023

522 Views

1Interdepartmental Program in Biomedical Science and Engineering, University of California at Santa Barbara, 2Department of Chemistry and Biochemistry, University of California at Santa Barbara

As an analytical technique, nanoimpact electrochemistry, an increasingly important approach to counting and characterizing nanometer-scale, electro-inactive particles, suffers from poor precision due to the heterogeneous current distributions that arise from its use of ultramicroelectrodes. Outlined here is a generalized approach, termed "electrocatalytic interruption," that enhances precision in such measurements.

Tags

Precise Electrochemical Sizing

-- Views

Related Videos

article

An Improved Technique for Trimethylamine Detection in Animal-Derived Medicine by Headspace Gas Chromatography-Tandem Quadrupole Mass Spectrometry

article

Porphyrin-Modified Beads for Use as Compensation Controls in Flow Cytometry

article

Tracking Electrochemistry on Single Nanoparticles with Surface-Enhanced Raman Scattering Spectroscopy and Microscopy

article

Experimental Approaches for the Synthesis of Low-Valent Metal-Organic Frameworks from Multitopic Phosphine Linkers

article

Author Spotlight: Exploring Tea Aroma Using Solvent-Assisted Flavor Evaporation Technique

article

Magnetometric Characterization of Intermediates in the Solid-State Electrochemistry of Redox-Active Metal-Organic Frameworks

article

Author Spotlight: Functionalizing Metal-Organic Frameworks: Advancements, Challenges, and the Power of Post-Synthetic Ligand Exchange

article

Single-Molecule Surface-Enhanced Raman Scattering Measurements Enabled by Plasmonic DNA Origami Nanoantennas

article

Author Spotlight: A Rapid, Microwave-Assisted Hydrothermal Synthesis Of Nickel Hydroxide Nanosheets

article

Author Spotlight: Accelerating Discovery in Microporous Material Chemistry

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved