A subscription to JoVE is required to view this content. Sign in or start your free trial.
يصف هذا البروتوكول تقنية لتوليد السايبريد من الخلايا السرطانية المعلقة كأداة لدراسة دور الميتوكوندريا في عملية الورم.
في السنوات الأخيرة ، ارتفع عدد الدراسات المخصصة للتأكد من العلاقة بين الميتوكوندريا والسرطان بشكل كبير. ومع ذلك ، لا تزال هناك حاجة إلى مزيد من الجهود لفهم العلاقة التي تنطوي على تغييرات في الميتوكوندريا وتكوين الأورام بشكل كامل ، وكذلك لتحديد الأنماط الظاهرية للميتوكوندريا المرتبطة بالورم. على سبيل المثال ، لتقييم مساهمة الميتوكوندريا في عمليات تكوين الأورام وورم خبيث ، من الضروري فهم تأثير الميتوكوندريا من الخلايا السرطانية في البيئات النووية المختلفة. لهذا الغرض ، يتمثل أحد الأساليب الممكنة في نقل الميتوكوندريا إلى خلفية نووية مختلفة للحصول على ما يسمى بالخلايا السايبريدية. في تقنيات cybridization التقليدية ، يتم إعادة ملء خط الخلية الذي يفتقر إلى mtDNA (ρ0 ، خلية مانحة نووية) بالميتوكوندريا المشتقة من الخلايا المنزوعة النواة أو الصفائح الدموية. ومع ذلك ، تتطلب عملية الاستئصال التصاق جيد للخلايا بلوحة المزرعة ، وهي ميزة تفقد جزئيا أو كليا في كثير من الحالات في الخلايا الغازية. بالإضافة إلى ذلك ، هناك صعوبة أخرى موجودة في الطرق التقليدية وهي تحقيق الإزالة الكاملة ل mtDNA الداخلي من خط الخلية المتلقي للميتوكوندريا للحصول على خلفيات الحمض النووي والميتوكوندريا النقية ، وتجنب وجود نوعين مختلفين من mtDNA في cybrid المتولد. في هذا العمل ، نقدم بروتوكول تبادل الميتوكوندريا المطبق على الخلايا السرطانية المعلقة النمو بناء على إعادة توطين الخلايا المعالجة مسبقا للرودامين 6G مع الميتوكوندريا المعزولة. تسمح لنا هذه المنهجية بالتغلب على قيود الأساليب التقليدية ، وبالتالي يمكن استخدامها كأداة لتوسيع فهم دور الميتوكوندريا في تطور السرطان وورم خبيث.
إعادة برمجة استقلاب الطاقة هو السمة المميزة للسرطان1 التي لوحظت لأول مرة من قبل أوتو واربورغ في ثلاثينيات القرن العشرين2. في ظل الظروف الهوائية ، تقوم الخلايا الطبيعية بتحويل الجلوكوز إلى بيروفات ، والتي تولد بعد ذلك أسيتيل-CoA ، مما يغذي آلية الميتوكوندريا ويعزز التنفس الخلوي. ومع ذلك ، أظهر واربورغ أنه حتى في ظل الظروف المعيارية ، تقوم معظم الخلايا السرطانية بتحويل البيروفات التي تم الحصول عليها من عملية تحلل السكر إلى لاكتات ، وتحول طريقها للحصول على الطاقة. يعرف هذا التعديل الأيضي باسم "تأثير واربورغ" ويمكن بعض الخلايا السرطانية من توفير مطالبها النشطة للنمو السريع والانقسام ، على الرغم من توليد ATP بكفاءة أقل من الع....
ملاحظة: يتم تحديد جميع وسائط الاستزراع والتراكيب العازلة في الجدول 1. قبل توليد السايبريد ، يجب كتابة كل من ملفات تعريف الحمض النووي للميتوكوندريا والنووية من خلايا المتبرع والمتلقي لتأكيد وجود اختلافات وراثية في كلا الجينومين بين خطوط الخلايا. في هذه الدراسة ، تم استخدام خط خلية L929 متاح تجاريا وخط الخلية المشتق منه ، L929dt ، والذي تم إنشاؤه تلقائيا في مختبرنا (انظر13 لمزيد من المعلومات). تقدم خطوط الخلايا هذه اختلافين في تسلسل جين mt-Nd2 الخاص بها والذي يمكن استخدامه لتأكيد نقاء mtDNA بمجرد الانتهاء من عملية التجسير13. في هذه الحالة ، تم تأكيد نقاء الخلفية النووية من خلال حساسية المضادات الح....
بعد اتباع البروتوكول المقدم أعلاه ، يجب الحصول على خط خلية سايبريد متجانسة ذات خلفية نووية محفوظة ولكن مع نمط وراثي جديد للميتوكوندريا ، كما هو موضح في المخططات في الشكل 1 والشكل 2. يمكن تأكيد نقاء الحمض النووي والميتوكوندريا والنووي الموجود في الجابريدات ?.......
منذ أن أفاد أوتو واربورغ أن الخلايا السرطانية تحول عملية التمثيل الغذائي وتحفز "تحلل السكر الهوائي"3,4 مع تقليل تنفس الميتوكوندريا ، نما الاهتمام بدور الميتوكوندريا في تحول السرطان وتطوره بشكل كبير. في السنوات الأخيرة ، تم افتراض الطفرات في mtDNA واختلال المي?.......
يعلن أصحاب البلاغ عدم وجود تضارب في المصالح.
تم تمويل هذا البحث من خلال المنحة رقم PID2019-105128RB-I00 إلى RSA و JMB و AA ، و PGC2018-095795-B-I00 إلى PFS و RML ، وكلاهما ممول من MCIN / AEI / 10.13039 / 501100011033 وأرقام المنح B31_20R (RSA و JMA و AA) و E35_17R (PFS و RML) وبتمويل من Gobierno de Aragón. وحظي عمل الرابطة بدعم من منحة من الرابطة الإسبانية لمكافحة الكانسر PRDAR21487SOLE. ويود المؤلفان أن يعربا عن تقديرهما لاستخدام الخدمة العامة للدعم والتحقيق في الأجهزة العليا للرقابة المالية، جامعة سرقسطة.
....Name | Company | Catalog Number | Comments |
3500XL Genetic Analyzer | ThermoFisher Scientific | 4406016 | |
6-well plate | Corning | 08-772-1B | |
Ammonium persulfate | Sigma-Aldrich | A3678 | |
AmpFlSTR Identifiler Plus PCR Amplification Kit | ThermoFisher Scientific | 4427368 | |
Anode Buffer Container 3500 Series | Applied Biosystems | 4393927 | |
Boric acid | PanReac | 131015 | |
Bradford assay | Biorad | 5000002 | |
Cathode Buffer Container 3500 Series | Applied Biosystems | 4408256 | |
Cell culture flasks | TPP | 90076 | |
DMEM high glucose | Gibco | 11965092 | |
EDTA | PanReac | 131026 | |
Ethidium Bromide | Sigma-Aldrich | E8751 | |
Geneticin | Gibco | 10131027 | |
Homogenizer Teflon pestle | Deltalab | 196102 | |
L929 cell line | ATCC | CCL-1 | |
MiniProtean Tetra4 Gel System | BioRad | 1658004 | |
MOPS | Sigma-Aldrich | M1254 | |
PCR primers | Sigma-Aldrich | Custom products | |
Polyacrylamide Solution 30% | PanReac | A3626 | |
Polyethylene glycol | Sigma-Aldrich | P7181 | |
POP-7 | Applied Biosystems | 4393714 | |
Pyruvate | Sigma-Aldrich | P5280 | |
QIAmp DNA Mini Kit | Qiagen | 51306 | |
Rhodamine-6G | Sigma-Aldrich | R4127 | |
Serum Fetal Bovine | Sigma-Aldrich | F7524 | |
SspI | New England Biolabs | R3132 | |
Streptomycin/penicillin | PAN biotech | P06-07100 | |
Sucrose | Sigma-Aldrich | S3089 | |
TEMED | Sigma-Aldrich | T9281 | |
Tris | PanReac | P14030b | |
Uridine | Sigma-Aldrich | U3750 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved