JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

神经网络是建立在胚胎大脑发育神经生物学的一个基本问题。在这里,我们结合电穿孔技术与新的遗传工具,如酶Cre / LOX-质粒和PiggyBac转介导的DNA换位系统在禽流后脑背中间贴上标签,并跟踪他们的轴突预测和突触在不同发育阶段的目标。

摘要

鸡胚神经管电具有许多优点,如快速,高效的成神经细胞的外源基因表达。在这篇稿件中,我们提供了一种方法,展示了独特的电穿孔DNA禽流后脑E2.75为了明确标示神经祖细胞的一个子集,以及如何按照他们的轴突预测和突触的目标非常先进的发展阶段, E14.5。我们利用新的遗传工具,包括特异性增强子元件,​​酶Cre /液氧 - 基于质粒和PiggyBac转介导的DNA换位后脑细胞的一种亚型(最背的分组的interneurons,DA1)系统来驱动GFP表达。随后在早期和晚期胚胎阶段,在不同的脑干区域的轴突轨迹和DA1轴突的目标。这种策略有助于先进的技术,针对感兴趣的细胞在胚胎后脑TRA庆安电路形成多个发展阶段。

引言

后脑是一个关键的中继枢纽神经系统之间的通信中枢和周围神经系统神经网络通过递增和递减。它调节的基本功能,包括呼吸,意识,听觉和运动协调1-3。在早期胚胎发育过程中,脊椎动物的后脑瞬时细分成重复菱沿其前后轴(AP),不同的神经细胞类型的形成,并产生多个脑干中心4。后脑也被划分成基底和鼻翼板,在指定离散神经祖细胞变得和区分不同的DV地点3,5,6沿背腹轴(DV)。怎样早期AP和DV特定的神经元模式的脑干功能设计电路的设立在很大程度上是未知。

为了获得这个基本知识的问题,工具都需要以特定亚群的神经元在早期后脑贴上标签,以跟踪它们的轴突轨迹和连接更高级的阶段。我们先前已经利用特异性增强子元件,和一个CRE / LoxP位条件的表达背脊髓在早期鸡胚7-9的轴突轨迹跟踪系统。在当前的手稿中,我们有针对性的后脑和标记后期胚胎后脑的interneurons,轴突和其突触目标,使用修改后的电战略和PiggyBac转 - 介导DNA换位的升级实验范式。我们的新战略,可以在一侧的后脑和他们的的轴突预测和突触位点不同的胚胎阶段的跟踪标记不同的神经元亚型,从2至12天电。基于这种方法,我们贴上了最背的分组后脑的interneurons(dA1/Atoh1 + 细胞),并揭示了两个对侧上升轴突投射图案,分别来自不同AP的位置和拉长了一个独特的索。 DA1轴突被发现在听觉核,中脑,小脑10多层的项目,并形成突触。

小鸡电的结合,遗传神经元和先进得多的发展阶段分析预测网站跟踪研究在大脑中形成的神经网络,并阐明控制电路形成的分子机制,提供一个独特的平台。

研究方案

1。后脑电穿孔

1.1处理蛋

  1. 将鸡蛋在培养箱(37-38.5°C)水平。胚胎电孵育65-70小时后,当他们到达16-17(HH)阶段(25-30体节)。
  2. 从培养箱中取出鸡蛋,它们保持在水平位置。

1.2准备工作

  1. 上拉玻璃毛细管(直径0.5 mm)。
  2. 与L形的弯曲的黄金Genetrodes电极(直径3 mm)连接到脉冲发生器的适配器保持。电参数包括25伏,5个脉冲数,45毫秒脉冲长度,300毫秒脉冲间隔。
  3. 准备口吸管,10毫升的注射器针头,封口膜条,软毛刷,锋利的解剖剪刀和25毫升无菌PBS溶液。这个数额通常是足以应付一个鸡蛋托盘(鸡蛋18)。
  4. 准备了充足的DNA质粒的混合物(5微克/微升)和增加约0.025%的快速绿色染料,以可视化DNA注射。一般是足够的一个托盘的注射体积为4微升。

1.3窗口,注射和电

  1. 用70%乙醇清洁鸡蛋壳。
  2. 一次处理一个鸡蛋胚胎曝光时间,以尽量减少在空气中。
  3. 用剪刀结束了一个洞的鸡蛋极白蛋白用注射器除去3-4毫升。不要取出白蛋白量较大,因为它降低了生存能力。
  4. 打开一个椭圆形的小窗口(2.5×2厘米大小)用解剖剪刀将鸡蛋壳上的中心。
  5. 的PBS淌下几滴之上的胚胎,在整个过程中,以防止干燥。
  6. 加载少量的DNA混合物到玻璃毛细管口移液管使用。
  7. 将胚胎后端向你。没有墨水喷射需要在此阶段的胚胎是清晰可见的。避免墨水注入增加胚胎存活。尾后脑穿透毛细管〜45°。不要删除任何来自各地的胚胎膜。仔细DNA溶液注入到后脑腔和呼气,而形成气泡。 DNA溶液向前传播。
  8. DNA注射后,立即将平行电极在精确的AP和DV后脑的位置,你的目标是目标。腹侧电极小幅推而不触及心脏,因为它可能会降低活力。脉冲电穿孔。电极应覆盖有气泡,表示导电性( 图1A)。
  9. 小心地取出电极和滴几滴的PBS,来冷却胚胎,并除去气泡。密封正确打开的鸡蛋在孵化过程中,以防止干燥用封口膜条。用软毛刷清洗电极在PBS。
  10. 将蛋在孵化器中所需的时间长度。胚胎的生存期是大约90%后2-3天电穿孔,并减少70%的12天电穿孔。

2。分析胚胎

2.1平面安装准备和免疫

  1. 平板式筹备的后脑可以执行E6.5显微镜或立体显微镜下轻松地可视化轴突。
  2. 通过仔细解剖胚胎从周围膜和血管分开。将胚胎在一个小的 - 涂层培养皿中含有PBS。钨针朝向背侧,将胚胎的菜。执行后脑屋顶板使用的是锋利的玻璃毛细管中缝背。
  3. 使用尖锐的镊子和微型剪刀持有的头部和上部拉后脑组织非常仔细地从吻端到尾鳍。后脑分离后,​​除去剩余的腹侧组织,以达到清洁制剂。
  4. 孵育后脑4%多聚甲醛(PFA)的溶液在室温下1-2小时(RT)。 PBT(PBS/0.1%的Triton X-100)后脑洗净去除PFA。
  5. 对于在平面安装hindbrains免疫荧光,加500微升的封闭液(5%山羊血清在室温下孵育2小时,用第一抗体对在4℃下洗涤(15分钟×3)与PBT PBT和孵育孵育与第二抗体在RT下搅拌2小时。与PBT(15分钟×3)进行清洗。
  6. 放置在玻片上,后脑朝向背侧。日光灯的安装介质添加到后脑。使用玻璃毛细管或钨针,后脑平坦的幻灯片上。
  7. 添加少量润滑脂在每一个角落,以防止挤压的组织由盖玻片。小心地放置盖玻片后脑上,避免产生气泡。对于坚持补充指甲油覆盖玻璃边缘。

2.2冷冻切片和免疫

  1. 低温部分的脑干CAN是在任何阶段轴突轨迹可视化。然而,E6.5后,这应该是优选的方法,因为可视化的平面安装的胚胎,变得太厚的轴突的难度。此外,示范突触需要切片的组织和高倍率显微镜下检视。
  2. 解剖胚胎,并删除所有周围的组织。用PBS冲洗。削减的胚胎尾部分的髓质使用微型剪刀和尖锐的镊子。小脑和脑之间的一个大切口,取出整个脑干。组织应包含延髓,脑桥和小脑。
  3. 在4%PFA过夜(ON)在4℃,修复脑干,用PBS(10分钟×3)冲洗,并在4°C,直到那颗孵育30%的蔗糖。
  4. 低温模具中嵌入后脑与华侨城(最佳切削温度)的化合物,将其放置在-20°C至冻结,如在其他地方11。
  5. 在OCT块放置在低温恒温器中所需的剖轴。横截面宽度为12μm。
  6. 干燥的幻灯片。添加100微升封闭液在室温下2小时,每张幻灯片上。添加100μl的抗体在封闭溶液稀释至所需浓度。 1次和第2次抗体的潜伏期为ON时,在4℃下2小时,分别在RT,。对于每个温育时间,轻轻地添加封口膜条的顶部滑动,以防止干燥。用PBS洗涤(10分钟×3)抗体之间。如果需要,添加大埤1:1,000(4'-6-二脒基-2 - 苯基吲哚),在PBS中稀释,在RT下20分钟。用PBS冲洗。
  7. 安装幻灯片日光灯安装媒体。让干1小时前分析。

结果

这个协议最近发现轴突的模式和投影网站的DA1群的interneurons在小鸡后脑10。要具体标明这些轴突,增强子元件(Atoh1的),先前已经被作为具体的脊柱DI1神经元8,12,13其特征在于,确认表达在后脑DA1单元10。该元件上游克隆到Cre重组和合作电在E2.75随着一个CRE依赖细胞质GFP记者质粒(pCAGG LoxP位停止LoxP位cGFP的图1BI)。由平坦的安装准备分析hindbrains 48小时以下的电?...

讨论

OVO中电是一个可行的,可靠的,有效的工具来检查细胞规范和轴突指导在鸡胚神经系统的发展20。在这个协议中,我们描述了一个模式把小鸡后脑电E2.75使用增强子元件,​​使有条件的标签特定的interneurons。这一战略的结合换位系统PiggyBac转介导外源基因插入到鸡基因组,这使跟踪的的轴突航线,预测和突触网站在胚胎发育晚期。

以前的方法标签轴突/把小鸡?...

披露声明

没有利益冲突的声明。

致谢

材料

NameCompanyCatalog NumberComments
L-shaped gold Genetrodes 3 mm electrodesBTX, Harvard Apparatus45-0162
pulse generator, ECM 830BTX, Harvard Apparatus45-0002
OCT (Optimal Cutting Temperature) CompoundTissue-Tek Sakura4583 O.C.T. Compound
Nail PolishFrom Any Commercial Supplier

参考文献

  1. Altman, J., Bayer, S. A. Development of the precerebellar nuclei in the rat: II. The intramural olivary migratory stream and the neurogenetic organization of the inferior olive. J. Comp. Neurol. 257, 490-512 (1987).
  2. Rose, M. F., Ahmad, K. A., Thaller, C., Zoghbi, H. Y. Excitatory neurons of the proprioceptive, interoceptive, and arousal hindbrain networks share a developmental requirement for Math1. Proc. Natl. Acad. Sci. U.S.A. 106, 22462-22467 (2009).
  3. Storm, R., et al. The bHLH transcription factor Olig3 marks the dorsal neuroepithelium of the hindbrain and is essential for the development of brainstem nuclei. Development. 136, 295-305 (2009).
  4. Lumsden, A. The cellular basis of segmentation in the developing hindbrain. Trends Neurosci. 13, 329-335 (1990).
  5. Liu, Z., et al. Control of precerebellar neuron development by Olig3 bHLH transcription factor. J. Neurosci. 28, 10124-10133 (2008).
  6. Muller, T., et al. The bHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord. Genes Dev. 19, 733-743 (2005).
  7. Avraham, O., et al. Motor and dorsal root ganglion axons serve as choice points for the ipsilateral turning of dI3 axons. J. Neurosci. 30, 15546-15557 (2010).
  8. Avraham, O., et al. Transcriptional control of axonal guidance and sorting in dorsal interneurons by the Lim-HD proteins Lhx9 and Lhx1. Neural Dev. 4, 21 (2009).
  9. Avraham, O., Zisman, S., Hadas, Y., Vald, L., Klar, A. Deciphering axonal pathways of genetically defined groups of neurons in the chick neural tube utilizing in ovo electroporation. J. Vis. Exp. (39), e1792 (2010).
  10. Kohl, A., Hadas, Y., Klar, A., Sela-Donenfeld, D. Axonal Patterns and Targets of dA1 Interneurons in the Chick Hindbrain. J. Neurosci. 32, 5757-5771 (2012).
  11. Vogel, J., Mobius, C., Kuschinsky, W. Early delineation of ischemic tissue in rat brain cryosections by high-contrast staining. Stroke. 30, 1134-1141 (1999).
  12. Helms, A. W., Abney, A. L., Ben-Arie, N., Zoghbi, H. Y., Johnson, J. E. Autoregulation and multiple enhancers control Math1 expression in the developing nervous system. Development. 127, 1185-1196 (2000).
  13. Lumpkin, E. A., et al. Math1-driven GFP expression in the developing nervous system of transgenic mice. Gene Expr. Patterns. 3, 389-395 (2003).
  14. Lu, Y., Lin, C., Wang, X. PiggyBac transgenic strategies in the developing chicken spinal cord. Nucleic Acids Res. 37, e141 (2009).
  15. Wang, J., et al. piggyBac-like elements in the pink bollworm, Pectinophora gossypiella. Insect Mol. Biol. 19, 177-184 (2010).
  16. Alsina, B., Vu, T., Cohen-Cory, S. Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat. Neurosci. 4, 1093-1101 (2001).
  17. Leal-Ortiz, S., et al. Piccolo modulation of Synapsin1a dynamics regulates synaptic vesicle exocytosis. J. Cell Biol. 181, 831-846 (2008).
  18. Gardzinski, P., et al. The role of synaptotagmin I C2A calcium-binding domain in synaptic vesicle clustering during synapse formation. J. Physiol. 581, 75-90 (2007).
  19. Nowack, A., Yao, J., Custer, K. L., Bajjalieh, S. M. SV2 regulates neurotransmitter release via multiple mechanisms. Am. J. Physiol. Cell Physiol. 299, C960-C967 (2010).
  20. Itasaki, N., Sharpe, J., Morrison, A., Krumlauf, R. Reprogramming Hox expression in the vertebrate hindbrain: influence of paraxial mesoderm and rhombomere transposition. Neuron. 16, 487-500 (1996).
  21. Clarke, J. D., Lumsden, A. Segmental repetition of neuronal phenotype sets in the chick embryo hindbrain. Development. 118, 151-162 (1993).
  22. Diaz, C., Glover, J. C., Puelles, L., Bjaalie, J. G. The relationship between hodological and cytoarchitectonic organization in the vestibular complex of the 11-day chicken embryo. J. Comp. Neurol. 457, 87-105 (2003).
  23. Marin, F., Puelles, L. Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur. J. Neurosci. 7, 1714-1738 (1995).
  24. Niwa, H., Yamamura, K., Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 108, 193-199 (1991).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

75 Interneuron DA1 GFP OVO

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。