登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

一种用于脂肪酸含量和组成在微藻基于机械破碎细胞,溶剂为基础的脂质提取,酯交换,以及量化和鉴定用气相色谱法的脂肪酸的测定方法进行说明。一个tripentadecanoin内标是用来弥补提取和不完整的酯交换过程中可能发生的损失。

摘要

的方法,以确定存在于微藻总脂肪酸含量和组成进行说明。脂肪酸是微藻生物质的主要成分。这些脂肪酸可以存在于不同的酰基脂质类。尤其是存在于三酰基甘油(TAG)的脂肪酸是具有商业价值的,因为它们可以用于生产运输燃料,散装化学品,营养品(ω-3脂肪酸)和粮食商品。开发商业应用,都需要脂肪酸含量及组成可靠的定量分析方法。微藻是单细胞通过刚性的细胞壁所包围。 A脂肪酸分析方法应提供足够的细胞破碎解放所有酰基脂质和使用的提取方法应该能够提取所有酰基脂质类。

该方法这里给出存在于微藻所有脂肪酸可以准确和可重复的iDENtified并使用独立于它们的链长,不饱和度,或脂质类它们的一部分少量样品(5毫克)进行定量。

这种方法不提供有关不同脂质类的相对丰度的信息,但可以延伸到彼此分离的脂质类。

该方法是基于机械破碎细胞,溶剂为基础的脂质提取,脂肪酸对脂肪酸甲基酯(脂肪酸甲酯)酯交换反应,并定量分析和鉴定的气相色谱(GC-FID),脂肪酸甲酯的序列。一个TAG内标(tripentadecanoin)加入该分析方法之前,以纠正提取和不完整的酯交换反应过程中的损失。

引言

脂肪酸是一体微藻生物质的主要成分,通常弥补之间的细胞干重1-3 5-50%。它们主要存在于甘油脂的形式。这些甘油脂又主要包括磷脂,糖脂和甘油三酯(TAG)的。尤其是存在于TAG的脂肪酸是具有商业价值的,因为它们可以被用作用于生产运输燃料,散装化学品,营养品(ω-3脂肪酸)和粮食商品3-6的资源。微藻可以在海的水基种植介质成长,可以具有高得多的单位面积生产率比陆生植物,并在该不适合于农业的位置可以培养在光生物反应器,甚至可能是近海。由于这些原因,微藻通常被认为是一个很有前途的替代陆地植物生产生物柴油等大宗产品3-6。可能没有农业的升和或淡水(当在封闭的光生物反应器或栽培时,海洋微藻的使用)是需要他们的生产。因此,从微藻生物燃料衍生的被认为是第三代生物燃料。

脂肪酸(干重%),脂质类组合物,以及所述脂肪酸长度和饱和度的总细胞含量的微藻物种之间是高度可变的。此外,这些特性随培养条件如营养物可用性,温度,pH值和光强1,2。例如,当暴露在氮饥饿,微藻可积累大量的TAG。在最佳生长条件TAG典型构成的干重计少于2%,但是当暴露在氮饥饿TAG含量可提高到微藻干重的1到40%。

微藻主要生产脂肪酸与16和18的链长个碳原子,但是有些种类可以使长度最多为24个碳原子的脂肪酸。既饱和以及高度不饱和脂肪酸是由微藻生产。后者包括脂肪酸与营养益处(ω-3脂肪酸),如C20:5(二十碳五烯酸,EPA)和C22:6(二十二碳六烯酸; DHA)的量没有蔬菜的替代品存在1,2,4,7。脂肪酸链的长度和饱和度的(分布)也决定了藻类衍生的生物燃料和食用油4,8的性能和质量。

开发的微藻衍生的脂肪酸的商业应用中,都需要的脂肪酸含量和组成可靠的定量分析方法。

由于还指出Ryckebosch 。9,在微藻脂肪酸分析,从其它底物( 植物油,食品,动物组织等)是区别于导致1)微藻是单细胞的刚性细胞壁所包围,复杂的脂质提取; 2)微藻含有各种脂质类和脂质类分布是高度可变的7。这些不同的类脂质有各种各样的化学结构和如极性性质。另外,不是酰基脂质其它脂质类生产; 3)微藻含有多种脂肪酸,范围从在长度12-24个碳原子,同时含有饱和以及高度不饱和脂肪酸。因此,开发了以分析脂肪酸底物比微藻其它方法,可能不适合于分析脂肪酸的微藻。

如由Ryckebosch 9评论,常用的脂质提取程序之间的主要区别是在所使用的溶剂系统。由于种类繁多目前在微藻的脂质类的,在每个极性不同,提取的脂的数量将与使用10-12溶剂不同而不同。这导致脂质含量和组成在文学9,10介绍的不一致。根据所用的溶剂系统中,基于溶剂萃取而不破碎细胞的方法通过,例如,珠击或超声处理,可能无法提取,因为一些微藻物种9,13的刚性结构的所有脂质。在不完全的脂质提取的情况下,不同的类脂质的提取效率可以变化14。这也可对测得的脂肪酸组合物的效果,因为脂肪酸的组成是可变的脂质类7之间。

我们的方法是基于机械破碎细胞,溶剂为基础的脂质提取,脂肪酸对脂肪酸甲基酯(脂肪酸甲酯)酯交换反应,并且量化和识别使用气相色谱与火焰电离组合脂肪酸甲酯组成的序列化检测器(GC-FID)。在三酰基甘油(tripentadecanoin)形式的内标是在分析过程之前加入。提取和不完整的酯交换过程中可能发生的损失可以被用于纠正。该方法可用于确定内容以及存在于微藻生物质的脂肪酸的组合物。存在于不同的酰基脂质类,包括存储(TAG)以及膜脂(糖脂,磷脂),被检测,识别和准确和再现地量化由该方法仅使用少量样品(5毫克)的所有脂肪酸。此方法不提供有关不同类脂质的相对丰度信息。然而,该方法可以扩展到从对方1分离脂质类。不同的类脂质的浓度和脂肪酸组成可以被单独确定。

在文献中其他几个方法描述分析脂质微藻。一些方法集中在总亲脂性成分15,而其他方法集中在总脂肪酸9,16。这些替代品包括重量法测定总提取脂质,直接转酯化脂肪酸的利用色谱法结合定量和染色细胞与亲脂性荧光染料。

常用的替代品的使用色谱脂肪酸的量化是用重量法测定17,18脂质定量。的测定重量法优点是缺乏像气相色谱仪的先进和昂贵的设备要求;缓解设定的,因为标准化的分析设备( 索氏)的可用性起来的程序,以及一个重量法测定是耗时少比色谱法为基础的方法。使用基于色谱方法对超视距的主要优点呃手的是,在这种方法中仅脂肪酸计量。在一个重量法测定含脂类,如色素或类固醇的非脂肪酸,也包​​括在确定。这些含非脂肪酸的脂质可以弥补脂类总量的很大比例(> 50%)。如果一个人只关心脂肪酸含量(例如,用于生物柴油的应用程序),它会在一个重量法测定是用来被高估。另外,在重量分析确定用来衡量所提取的脂类分析天平的准确度判断为需要将所使用的样本大小。这个量通常比当色谱使用所需的量多。最后,使用色谱法重量分析测定的另一个优点是,色谱提供了有关的脂肪酸组合物的信息。

另一种方法给我们提出的方法是直接酯交换16,19,20。在该方法中脂质提取和脂肪酸的酯交换反应,以脂肪酸甲酯相结合,在一个步骤。这种方法比单独的提取和酯交换步骤更快,但结合这些步骤限制了可用于萃取的溶剂。这可能提取效率产生负面影响。一个单独的脂质提取和酯基转移步骤的另一个优点是,它允许对这些步骤1之间的额外的脂质类分离。这是不可能的,当直接酯交换使用。

其他常用的方法来确定在微藻的脂质含量,包括染色与亲脂性荧光染料,如尼罗河生物质能红色或肾上腺素和测量荧光信号21,22。这些方法的优点在于,它们比其它方法少费力。这些方法的缺点是,所述荧光响应是,由于各种原因,可变SPECI之间ES,栽培条件下,脂质类和分析程序。作为一个例子,一些这些变化是由在染料的吸收差异由微藻引起的。因此使用另一种定量分析方法的校准是必要的,优选为所有不同的培养条件和生长阶段进行。最后,这个方法不提供有关的脂肪酸组成的信息,并且是不准确的和可重现的比基于层析方法。

该方法是基于由拉默斯 23和Santos 24记载的方法,也被通过各种其他作者1,25-27应用。还有其他方法可用,基于相同的原理,并可能提供类似的结果9,28。

研究方案

1。样品制备

有样品制备列为步骤1.1和1.2两个备用协议。这两种方法都同样适合并得到相似的结果,但是,如果在有限的藻培养物体积量是可用的,方法1.1推荐。

注:对于任一协议,根据该协议,整个准备两个附加珠打浆机管但不添加藻它们被用作空白。以这种方式,在从提取自所用的材料组分造成的气相色谱峰可以被识别和量化。

1.1。样品制备协议选项1:建议在藻类培养的数量有限的可利用

  1. 确定的藻类干重的浓度(g / L)的培养液,例如所描述的布鲁尔等人 1。
  2. 转移量的培养液含有5-10毫克藻干重在玻璃离心管中。计算量的使用步骤1.1.1确定的生物量浓度转移的确切数额。
  3. 离心5分钟,1,200×g的。
  4. 弃去上清液的一部分,留下大约为0.25毫升管。
  5. 通过重新悬浮于剩余的上清液中的藻类温和上下吹打颗粒与完整细胞沉淀转移到用200μl移液管的珠打浆机管。
  6. 冲洗离心管和移液管玻璃与±0.15毫升milliQ水中和液体传送到同一珠打浆机管。
  7. 离心机珠打浆机管在最大转速,以确保没有气泡留在管的底部一分钟。它可以存储封闭珠打浆机管在-80℃下
  8. 冻干含有样品的珠打浆机管。它可以存储在密闭珠打浆机管在-80℃下

1.2。样品制备协议选项2

  1. 离心机的藻类培养液中的不确定量和弃上清。这是没有必要的,以确定生物量浓度或测量所使用的音量。
  2. 测量或用存在于培养基中的主盐的浓度计算的培养基的渗透压。
  3. 通过重悬细胞沉淀在相同体积洗涤细胞沉淀,如在步骤1.2.1使用的甲酸铵溶液,这近似于培养基的渗透压摩尔浓度。一个equiosmolar甲酸铵溶液可以防止细胞的洗涤过程中的细胞裂解。

注意:洗涤细胞是必要的,以消除存在于培养基中的盐。因为在他们的培养基中的盐浓度高的,这是用于在海洋微藻脂肪酸分析尤其重要。如果盐仍然存在,这会导致细胞干重将被在T后确定的数额高估他的协议。甲酸铵用于洗涤细胞,因为该解决方案将冻干过程中完全蒸发,不留任何残余物。

  1. 离心机藻液弃上清。
  2. 冻干细胞沉淀。
  3. 称取5〜10毫克冻干粉微藻成珠打浆机管。记录准确重量。

2。细胞破碎和脂质提取

注意:本节介绍了一个广泛的细胞分裂过程。可能的话,一些细胞破碎步骤是多余的,那么广泛破碎细胞可能会产生相同的结果对于一些微藻物种或生物量从某些培养条件而得。然而,这将需要验证每个特定情况。因此,建议广泛破坏协议被推荐为适合微藻的所有材料的通用方法。

  1. 权衡tripentadecanoin的确切数额(TRiacylglycerol含3 C15:0脂肪酸),并将其添加到一个精确已知量的4:5(体积/体积)氯仿:甲醇;以这种方式tripentadecanoin的浓度精确已知。目的是为50毫克/升的浓度Tripentadecanoin用作脂肪酸的定量的内标。
  2. 加入1 ml氯仿:甲醇4点05(体积/体积)含tripentadecanoin每个打浆管(在试剂和设备表中指定的)。检查是否有剩余的beadbeater管帽内无珠,这将导致泄漏的管子。使用正位移移液管准确加入溶剂。
  3. 珠打珠打浆机管每次8倍,在2500转60秒,用120秒内每跳动之间。
  4. 从珠打浆机管将溶液转移到一个干净的耐热15毫升玻璃离心管铁氟龙插入螺丝帽。确保所有的珠子从珠打浆机管转移为好。
  5. 到了h时珠打浆机管中,加入1 ml氯仿:甲醇4点05(V / V)含tripentadecanoin成珠打浆机管,靠近帽和混合,并将该溶液从步骤2.4转移到同一玻璃管。洗管3次(总共加入4ml氯仿:甲醇4点05(V / V)含tripentadecanoin用于每个样品 - 1毫升在步骤2.2中加入3毫升3洗涤步骤)。
  6. 涡流的玻璃管,持续5秒声处理及在超声浴中10分钟。
  7. 添加将2.5毫升的MilliQ水,含有50mM 2 - 氨基-2 - 羟甲基丙烷-1,3 - 二醇(TRIS)和1M NaCl的,​​这是用一个HCl溶液中设置pH至7。这将导致氯仿和甲醇之间的相分离:水。 1M NaCl的用于增强脂质朝向氯仿相中的平衡。
  8. 涡旋5秒,然后超声处理10分钟。
  9. 离心5分钟,在1200×g的。
  10. 使用玻璃巴斯德pipett整个氯仿相(底部相)转移到一个干净的玻璃管Ë。确保不转让任何相间或顶部阶段。
  11. 加入1 ml氯仿旧管(:水溶液含有甲醇)重新提取样品。
  12. 涡旋5秒,然后超声处理10分钟。
  13. 离心5分钟,在1200×g的。
  14. 使用玻璃巴斯德吸管和游泳池与步骤2.10第一氯仿馏分收集氯仿相(下相)。
  15. 如果困难是经验丰富的收集整个氯仿部分在上一步中,重复步骤2.11-2.14。否则执行步骤2.16。
  16. 从管中蒸发氯仿在氮气流中。之后可以存储这个步骤的样品在-20℃的氮气气氛下进行。

3。酯交换反应脂肪酸甲酯

  1. 加入3毫升甲醇中含有5%(体积/体积)硫酸,以含有干燥萃取脂质(管原本含有的氯仿级分)的管子和盖紧管。
  2. 涡持续5秒。
  3. 在一个块中的加热器或水浴中孵育样品3小时,在70℃。周期性地(每隔±30分钟)确保样品不沸腾(由于一个不正确地闭合盖子)和涡流管。在该反应中脂肪酸被甲基化到其脂肪酸甲基酯(脂肪酸甲酯)。
  4. 凉爽的样品至室温,并添加3毫升的MilliQ水和3毫升正己烷。
  5. 涡旋5秒和15分钟拌上试管旋转器。
  6. 离心5分钟,在1200×g的。
  7. 收集2毫升己烷(顶部)相,并用玻璃巴氏吸管把新鲜的玻璃管。
  8. 加入2ml的MilliQ水收集到的己烷相,以洗。
  9. 涡旋5秒,离心5分钟,1,200×g的。在此步骤之后,可以存储该样品在-20℃的氮气气氛下(不是必需的相分离)下。

4。脂肪酸甲酯的U定量唱气相色谱法

  1. 填GC小瓶用玻璃巴氏吸管的己烷相(上层相)。
  2. 将瓶盖上的GC小瓶。确保瓶盖完全密封,且不能转动,以防止水分蒸发从药瓶。
  3. 笔芯GC的清洗溶剂(正己烷),清空废液瓶,并把样品瓶的自动进样器。运行前在GC上,第一次运行2空白GC上的只含有正己烷的实际样品。
  4. 上运行的GC-FID对样品用Nukol柱(30×0.53毫米×1.0微米)。用250℃的入口温度,并使用氦作为载气,81.7千帕的压力和0.1:1的分流比,总流速:20毫升/分钟。在270℃以40毫升/分钟的H 2的流量为400毫升/分钟的空气流率和He流量为9.3毫升/分钟速率FID检测器温度。设定注射体积为1微升/样品。前,后洗注射器用正己烷。初始烘箱温度设定为90℃0.5分钟,然后升至机智小时20°C /分钟,直到200℃的烘箱内温度达到。然后烘箱的温度保持在200℃下进行39分钟。总运行时间为45分钟。

结果

通过这个过程得到的一个典型的色谱图示于图1。脂肪酸甲酯是由大小和饱和度分开使用的GC色谱柱和协议。较短链长的脂肪酸和多饱和脂肪酸(较少双键)具有更短的保留时间。所使用的GC柱和协议不打算分离脂肪酸异构体(相同的链长度和饱和度的程度,但双键位置不同),但是这可以通过使用一个不同的气相色谱柱和协议来实现。

脂肪酸浓度和组合物可以使?...

讨论

所描述的方法可以用于确定内容以及存在于微藻生物质的总脂肪酸的组成。从所有脂质类,包括存储(TAG)以及膜脂质(磷脂和糖脂)衍生的脂肪酸,被检测到。所有脂肪酸的链长的饱和的和度存在于微藻可以被检测和分辨。该方法是基于机械破碎细胞,溶剂为基础的脂质提取,脂肪酸对脂肪酸甲酯的酯交换,并用气相色谱与火焰离子化检测器(GC-FID)组合脂肪酸甲酯的定量。该方法需要少量的?...

披露声明

作者什么都没有透露。

致谢

这项工作的一部分是由财政研究所的创新促进了科学和技术战略基础研究(IWT-SBO)项目阳光和BIOSOLAR细胞的支持。埃里克更大胆和BackKim阮都承认他们对珠跳动过程的优化贡献。

材料

NameCompanyCatalog NumberComments
Reagent and equipmentCompanyCatalogue numberComments (optional)
tripentadecanoin (C15:0 TAG)Sigma AldrichT4257CAS Number 7370-46-9
TAG or FAME standards of all fatty acids expected in sampleSigma Aldrich
TAG or FAME standards of all fatty acids expected in sampleLipidox
TAG or FAME standards of all fatty acids expected in sampleLarodan
BeadbeaterBertin TechnologiesPrecellys 24
beadbeater tubesMP BiomedicalsLysing matrix E
116914500
GC-FIDHewlett-PackerHP6871
GC columnSupelcoNukol 25357
Positive displacement pipette 100-1000μlMettler ToledoMR-1000
Positive displacement pipet tips C-1000Mettler ToledoC-1000
Pipetvuller, Pi-Pump 2 mlVWR612-1925
glass tubesVWRSCERE5100160011G1
TUBE 16 X 100 MM BOROSILICATE 5.1 1 * 1.000VWRSCERE5100160011G1
Teflon coated screw-capsVWRSCERKSSR15415BY10
STUART SCIENTIFIC SB2 test tube rotatorVWR445-2101
Heated Evaporator/ConcentratorCole-ParmerYO-28690-25

参考文献

  1. Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., Wijffels, R. H. The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology. 124, 217-226 (2012).
  2. Hu, Q., Sommerfeld, M., et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal. 54 (4), 621-639 (2008).
  3. Chisti, Y. Biodiesel from microalgae. Biotechnology Advances. 25 (3), 294-306 (2007).
  4. Draaisma, R. B., Wijffels, R. H., et al. Food commodities from microalgae. Curr. Opin. Biotechnol. 24 (2), 169-177 (2012).
  5. Wijffels, R. H., Barbosa, M. J. An outlook on microalgal biofuels. Science. 329 (5993), 796-799 (2010).
  6. Wijffels, R. H., Barbosa, M. J., Eppink, M. H. M. Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioprod. Bioref. 4 (3), 287-295 (2010).
  7. Guschina, I. A., Harwood, J. L. Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research. 45 (2), 160-186 (2006).
  8. Schenk, P. M., Thomas-Hall, S. R., et al. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. BioEnergy Research. 1 (1), 20-43 (2008).
  9. Ryckebosch, E., Muylaert, K., Foubert, I. Optimization of an Analytical Procedure for Extraction of Lipids from Microalgae. Journal of the American Oil Chemists' Society. 89 (2), 189-198 (2011).
  10. Laurens, L. M. L., Dempster, T. A., et al. Algal Biomass Constituent Analysis: Method Uncertainties and Investigation of the Underlying Measuring Chemistries. Analytical Chemistry. 84 (4), 1879-1887 (2012).
  11. Iverson, S. J., Lang, S. L. C., Cooper, M. H. Comparison of the bligh and dyer and folch methods for total lipid determination in a broad range of marine tissue. Lipids. 36 (11), 1283-1287 (2001).
  12. Grima, E. M., Medina, A. R., et al. Comparison Between Extraction of Lipids and Fatty Acids from microalgal biomass. JAOCS. 71 (9), 955-959 (1994).
  13. Lee, J. Y., Yoo, C., Jun, S. Y., Ahn, C. Y., Oh, H. M. Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol. 101, 75-77 (2010).
  14. Guckert, J. B., Cooksey, K. E., Jackson, L. L. lipid solvent systems are not equivalent for analysis of lipid classes in the micro eukaryotic green alga. Journal of Microbiological Methods. 8, 139-149 (1988).
  15. Pruvost, J., Van Vooren, G., Cogne, G., Legrand, J. Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresource Technology. 100 (23), 5988-5995 (2009).
  16. Griffiths, M. J., Hille, R. P., Harrison, S. T. L. Selection of Direct Transesterification as the Preferred Method for Assay of Fatty Acid Content of Microalgae. 45 (11), 1053-1060 (2010).
  17. Folch, J., Lees, M., Sloane Stanley, G. H. S. A simple method for the isolation and purification of total lipides from animal tissues. J Biol. Chem. 226, 497-509 (1956).
  18. Bligh, E. G., Dyer, W. J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology. 37 (8), 911-917 (1959).
  19. Lepage, G., Roy, C. C. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. Journal of Lipid research. 25, 1391-1396 (1984).
  20. Welch, R. W. A micro-method for the estimation of oil content and composition in seed crops. J. Sci. Food Agric. 28 (7), 635-638 (1002).
  21. Chen, W., Zhang, C., Song, L., Sommerfeld, M., Hu, Q. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods. 77 (1), 41-47 (2009).
  22. Cooper, M. S., Hardin, W. R., Petersen, T. W., Cattolico, R. A. Visualizing "green oil" in live algal cells. Journal of Bioscience and Bioengineering. 109 (2), 198-201 (2010).
  23. Lamers, P. P., van de Laak, C. C., et al. Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnology and Bioengineering. 106 (4), 638-648 (2010).
  24. Santos, A. M., Janssen, M., Lamers, P. P., Evers, W. A., Wijffels, R. H. Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions. Bioresour Technol. 104, 593-599 (2012).
  25. Mulders, K. J. M., Weesepoel, Y., et al. Growth and pigment accumulation in nutrient-depleted Isochrysis aff. galbana T-ISO. J. Appl. Phycol. , (2012).
  26. Kliphuis, A. M., Klok, A. J., et al. Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance. J. Appl. Phycol. 24 (2), 253-266 (2012).
  27. Lamers, P. P., Janssen, M., De Vos, R. C. H., Bino, R. J., Wijffels, R. H. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. Journal of Biotechnology. 162 (1), 21-27 (2012).
  28. Wang, Z., Benning, C. Arabidopsis thaliana Polar Glycerolipid Profiling by Thin Layer Chromatography (TLC) Coupled with Gas-Liquid Chromatography (GLC). J. Vis. Exp. (49), e2518 (2011).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

80

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。