JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

Here, we describe the development and application of a gel contraction assay for evaluating contractile function in mesenchymal cells that underwent epithelial-mesenchymal transition.

摘要

Fibrosis is often involved in the pathogenesis of various chronic progressive diseases such as interstitial pulmonary disease. Pathological hallmark is the formation of fibroblastic foci, which is associated with the disease severity. Mesenchymal cells consisting of the fibroblastic foci are proposed to be derived from several cell sources, including originally resident intrapulmonary fibroblasts and circulating fibrocytes from bone marrow. Recently, mesenchymal cells that underwent epithelial-mesenchymal transition (EMT) have been also supposed to contribute to the pathogenesis of fibrosis. In addition, EMT can be induced by transforming growth factor β, and EMT can be enhanced by pro-inflammatory cytokines like tumor necrosis factor α. The gel contraction assay is an ideal in vitro model for the evaluation of contractility, which is one of the characteristic functions of fibroblasts and contributes to wound repair and fibrosis. Here, the development of a gel contraction assay is demonstrated for evaluating contractile ability of mesenchymal cells that underwent EMT.

引言

纤维化参与多种慢性进行性疾病,如间质性肺疾病,心脏纤维化,肝硬化,终端肾功能衰竭,系统性硬化,和自身免疫性疾病1的发病机制。间间质性肺疾病,特发性肺纤维化(IPF)是一种慢性进行性疾病,并显示预后差。 IPF的病理特点是成纤维细胞灶组成了与预后有关激活成纤维细胞和肌的发展。提出这样的肺成纤维细胞的起源是从几个间充质细胞,包括原驻地肺成纤维细胞和骨髓循环纤维细胞衍生的。最近,上皮-间质转化(EMT)已经提出了用间充质细胞2的形成相关联,并且有助于纤维化疾病的发病机制。

它被认为是电磁ŧ在胚胎发育过程中的重要作用,伤口愈合和癌症的进展,包括肿瘤侵袭和转移3。以下EMT的过程中,上皮细胞的上皮标记物,如E-钙粘蛋白的损失获得间充质细胞的能力,以及由间充质标志物,如波形蛋白和α平滑肌肌动蛋白(SMA)4,5的表达。以往的研究表明,EMT过程已与组织纤维化的发展在肾脏6和肺7被相关联的证据。此外,慢性炎症促进纤维化疾病8;此外,如炎性细胞因子如肿瘤坏死因子超家族成员14(TNFSF14; LIGHT),肿瘤坏死因子(TNF)-α和白细胞介素1β,已显示出提高的EMT 9-12。

胶原凝胶收缩试验,其中成纤维细胞嵌入型我一个基于胶原的细胞收缩测定胶原凝胶三维, 在体外模型收缩的评价理想。收缩是成纤维细胞的特征功能之一,并有助于正常的伤口修复和纤维化13。在该测定中,可以认为,成纤维细胞附着于I型通过整合素依赖性机制胶原被认为在一定条件下,以产生机械张力,并因此导致组织收缩。

这里,凝胶收缩测定的发展报告可以适于评估在经历EMT的细胞中采集收缩功能。这份报告表明,这种改进法是适用于评估在经历了EMT间质细胞收缩。

研究方案

1.准备肺上皮细胞的培养和

  1. 培养A549人肺上皮细胞(贴壁细胞系)中的Dulbecco改进的Eagle培养基(DMEM),补充有10%胎牛血清(FBS),100IU / ml青霉素,和100μg/ ml链霉素。
  2. 卸下并丢弃从培养皿的细胞培养基,并用5洗一次 - 10毫升磷酸盐缓冲盐水(PBS)中。清洗后,立即吸出PBS。
  3. 加2ml胰蛋白酶/乙二胺四乙酸(EDTA)(0.05%),在37℃下孵育,5%CO 2的3分钟。
  4. 收集脱离的细胞在含有细胞培养基,离心在RT管在150×g下4分钟离心管中。
  5. 悬浮细胞在2毫升细胞培养基的沉淀并除去对细胞计数的样品。算使用台盼蓝染色血球以检查细胞存活力细胞的数目。
  6. 种子A549细胞上10厘米聚苯乙烯板在0.5的密度- 1.0×10 6细胞/皿含10毫升凝胶收缩测定培养基的。种子上6孔聚苯乙烯板的细胞以0.5的密度- 1.0×10 5个细胞/孔用2ml为EMT确认培养基。孵育细胞在37℃和5%CO 2的24小时。

2. EMT过程

  1. 添加TGF-β1(5微克/毫升)的10微升和10微升的TNF-α(10微克/毫升),以在步骤1.6接种的板凝胶收缩试验。添加TGF-β1(5微克/毫升)的2微升和2μl的TNF-α(10微克/毫升)至板在步骤1.6接种EMT确认。在37℃和5%CO 2的48小时。

3.确认EMT过程的PCR和免疫印迹

  1. 确认形态变化(由鹅卵石状,以纺锤形)用相差显微镜处理的细胞中。
    注:规范人A549细胞有鹅卵石状和三角形的外观是上皮细胞的特征,但与TGF-β1和肿瘤坏死因子α刺激后,细胞出现长和梭形是类似于间充质细胞14,15。
  2. 评估上皮标记物,如E-钙粘蛋白的表达,和间充质标记物如N-钙粘蛋白,波形蛋白和α平滑肌肌动蛋白使用PCR或印迹。
    1. 使用RNA提取试剂盒16中的细胞中提取总RNA,并使用根据制造商的协议逆转录17合成cDNA。
    2. 测量使用实时PCR系统18,并根据制造商的说明单体花青染料PCR试 ​​剂盒的mRNA水平的表达。对于GAPDH特异性引物(甘油醛-3-磷酸脱氢酶),ACTA2(的α-肌动蛋白2),CDH1(钙粘蛋白-1; E-钙粘蛋白),和VIM(波形蛋白)示于表1中
    3. 裂解用裂解缓冲液( 表2)含有1%蛋白酶抑制剂混合物溶液中的细胞。测量使用蛋白测定试剂盒19,20的所有样品的蛋白浓度,并应用相同量的蛋白质,以聚丙烯酰胺凝胶。
      1. 执行SDS凝胶电泳和蛋白质的半干转移到PVDF膜21。 2小时 - 在1封闭缓冲液孵育初级抗体的膜。温育后,用洗涤缓冲液洗两次膜孵育与第二抗体在膜1小时。
        注:请参阅材料/设备表在这些研究中使用的抗体和稀释。 见表2为封闭缓冲液的组分。
      2. 两次洗涤用洗涤缓冲液的膜。就拿膜的照片与使用冷CCD相机11,23蛋白质印迹检测试剂盒22。

4。凝胶收缩试验评定EMT

  1. 吸从细胞培养容器中的条件培养基,并用5洗井 - 10mL的PBS,以去除死细胞。清洗后,立即吸出PBS。
  2. 加2ml的0.05%胰蛋白酶/ EDTA中,并在37℃反应和5%的CO 2 3分钟。
  3. 收集脱离的细胞在含有DMEM补充有蛋白酶抑制剂(1毫克/毫升),离心管在室温下在150×g下4分钟离心管中。
  4. 混合型胶原凝胶用蒸馏水,和4×浓缩的DMEM以调节体积以达到1.75毫克/毫升的胶原浓度,和1×DMEM的浓度。一定要保持冰凝胶培养基在这一步。
    注意:为了让6毫升凝胶培养基中,拌匀3.5毫升1型胶原凝胶(3毫克/毫升),1.5毫升4×浓的DMEM和1 ml蒸馏水。
  5. 悬浮于500μlPBS中的细胞沉淀并除去对细胞计数的样品。计数使用血球用锥虫蓝染色的细胞的数目来检查细胞存活力。
  6. 添加凝胶介质来调整卷来实现/孔3.0×10 5个细胞的细胞密度(6.0×10 5个细胞/ ml),轻轻地但很快没有凝胶化,通过移液混合。
  7. 分配将0.5ml混合物成24孔未处理的板的每个孔迅速并小心地使整齐圆筒形。要小心,不要让任何气泡污染凝胶( 图1A)。
    注意:含有细胞的凝胶介质是粘性的,并且可以很容易地在井胶凝并形成月牙形状。
  8. 在37℃下孵育在细胞培养箱15分钟的盘,5%CO 2和95%的湿度完全胶凝。
  9. 分离从板凝胶而不通过的方式移动的无菌刮刀在一个方向上绘制的圆周断裂。用刮刀轻轻转移凝胶至60mm组织培养皿含有5毫升含或不含TGF-β1(5毫微克/毫升)和TNF-α(10毫微克/毫升)的DMEM / 1%FBS的。
  10. 轻轻摇动菜,以确保凝胶漂浮在介质上。在37℃,5%CO 2和95%湿度下孵育在细胞培养箱中。

5.凝胶尺寸的测量

  1. 后使用图象分析系统0,24,48,和72小时测量胶原蛋白凝胶的尺寸。
    1. 打开凝胶文档系统( 图2A),并把餐具放入光屏蔽柜。然后起飞的内阁菜盖子。
    2. 打开相关的凝胶分析软件。单击菜单栏中的"图像采集按钮",显示在机柜凝胶的形象。然后,点击"获取",在菜单栏取凝胶( 图2B)的照片。
    3. 单击菜单栏( 图2C)中的"检测键",调整测量区域(黄圈我Q 图2C)通过拖动鼠标。然后,单击菜单栏中的"自动检测按钮"( 见图2D按钮)。该软件会自动检测出热图( 图2D)凝胶。
    4. 点击"确定",以提取图像处理凝胶的轮廓和计算的轮廓( 图2E)所包围的区域。的区域被计算后,将计算出的区域被显示在单独的弹出窗口。
      注意:如果凝胶成像期间彼此重叠,轻轻用无菌移液管尖移到凝胶。

结果

EMT期间,上皮细胞失去上皮标记,如E-钙粘蛋白,并获得间充质标志物,如波形蛋白和α平滑肌肌动蛋白4,5的表达。与TGF-β1和肿瘤坏死因子αA549人肺上皮细胞的温育诱导EMT。正常A549细胞的外观是鹅卵石状的形状,三角形形状是上皮细胞( 图3A)的特性,但是刺激的TGF-β1和TNF-α后,外观改变为长纺锤形是类似于间充质细胞( 图3B)。

讨论

在这项研究中开发的协议包括两个步骤。进行第一步骤以诱导EMT的,而第二个步骤是在凝胶收缩试验。因为它确认细胞发生EMT是很重要的,第2步提供了一个极好的补充,形态学和基因表达的变化。以往的研究表明,A549细胞的EMT诱导仅24,TGF-β1;然而,正如我们以前10日报道,TNF-α处理增强EMT和收购的间充质细胞标志物。它被认为是TGF-β介导EMT的机制是SMAD依赖性25。 TNFα增?...

披露声明

作者有没有利益冲突披露。

致谢

We thank Dr. Tadashi Koyama for technical help. This work was supported in part by JSPS KAKENHI Grant Numbers 23249045, 15K09211, 15K19172; a grant to the Respiratory Failure Research Group from the Ministry of Health, Labour and Welfare, Japan; a grant for research on allergic disease and immunology, Japan.

材料

NameCompanyCatalog NumberComments
DMEMsigma aldrich11965-092For A549 medium
FBSGIBCO10437
Transforming Growth Factor-β1, Human, recombinantWako Laboratory chemicals209-16544
Recombinant Human TNF-αR&D systems210-TA/CF
E-Cadherin (24E10) Rabbit mAbCell Signaling Technology#31951:3,000 dilution
Vimentin (D21H3) Rabbit mAbCell Signaling Technology#57411:3,000 dilution
Anti-α-Tubulin antibodysigma aldrichT90261:10,000 dilution
Monoclonal Anti-Actin, α-Smooth Muscle antibody sigma aldrichA52281:10,000 dilution
Anti-N-cadherin antibodyBD Transduction Laboratories#6109201:1,000 dilution
Anti-Mouse IgG, HRP-Linked Whole Ab Sheep (secondary antibody)GE HealthcareNA931-100UL1:20,000 dilution
Anti-Rabbit IgG, HRP-Linked Whole Ab Donkey (secondary antibody)GE HealthcareNA934-100UL1:20,000 dilution
Blocking reagentGE HealthcareRPN4182% in TBS-T
6 Well Clear Flat Bottom TC-Treated Multiwell Cell Culture Plate, with Lidcorning#353046
100 mm Cell culture dishTPP#93100
DMEM, powderlife technologies12100-046For 4× DMEM
Type 1 collagen gelNitta gelatinCellmatrix type I-A
24 Well cell culture plateAGC TECHNO GLASS1820-024
Gel Documentation System ATTOAE-6911FXNGel imager
Gel analyzing softwareATTODensitograph, ver. 3.00analysing software bundled with AE-6911FXN
Trypsin-EDTA (0.05%), phenol redlife technologies25300054
24 Well Plates, Non-TreatedIWAKI1820-024
Trypan Blue Solution, 0.4%life technologies15250-061
RNA extraction kitQiagen74106
Reverse transcriptaselife technologies18080044
Real time PCR systemStratageneMx-3000P
SYBR green PCR kitQiagen204145
Protease Inhibitor Cocktail (100x)life technologies78429
PVDF membraneATTO2392390
Protein assay kitbio-rad5000006JA 
Polyacrylamide gelATTO2331810
Western blotting detection reagentGE HealthcareRPN2232
Cold CCD cameraATTOEz-Capture MG/ST
Trypsin inhibitorsigma aldrichT9003-100MG
Polyoxyethylene (20)Sorbitan MonolaurateWako Laboratory chemicals163-11512
Polyoxyethylene (9) octyiphenyl etherWako Laboratory chemicals141-08321

参考文献

  1. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. The Journal of pathology. 214, 199-214 (2008).
  2. Hardie, W. D., Glasser, S. W., Hagood, J. S. Emerging concepts in the pathogenesis of lung fibrosis. The American journal of pathology. 175, 3-16 (2009).
  3. Kovacic, J. C., Mercader, N., Torres, M., Boehm, M., Fuster, V. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation. 125, 1795-1808 (2012).
  4. Thiery, J. P., Acloque, H., Huang, R. Y., Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell. 139, 871-890 (2009).
  5. Kalluri, R., Weinberg, R. A. The basics of epithelial-mesenchymal transition. The Journal of clinical investigation. 119, 1420-1428 (2009).
  6. Forino, M., et al. TGFbeta1 induces epithelial-mesenchymal transition, but not myofibroblast transdifferentiation of human kidney tubular epithelial cells in primary culture. International journal of experimental pathology. 87, 197-208 (2006).
  7. Yang, S., et al. Participation of miR-200 in pulmonary fibrosis. The American journal of pathology. 180, 484-493 (2012).
  8. Reynolds, H. Y. Lung inflammation and fibrosis: an alveolar macrophage-centered perspective from the 1970s to 1980s. American journal of respiratory and critical care medicine. 171, 98-102 (2005).
  9. Camara, J., Jarai, G. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. Fibrogenesis & tissue repair. 3, 2 (2010).
  10. Kamitani, S., et al. Simultaneous stimulation with TGF-beta1 and TNF-alpha induces epithelial mesenchymal transition in bronchial epithelial cells. International archives of allergy and immunology. 155, 119-128 (2011).
  11. Mikami, Y., et al. Lymphotoxin beta receptor signaling induces IL-8 production in human bronchial epithelial cells. PloS one. 9, e114791 (2014).
  12. Yamauchi, Y., et al. Tumor necrosis factor-alpha enhances both epithelial-mesenchymal transition and cell contraction induced in A549 human alveolar epithelial cells by transforming growth factor-beta1. Experimental lung research. 36, 12-24 (2010).
  13. Grinnell, F. Fibroblasts, myofibroblasts, and wound contraction. The Journal of cell biology. 124, 401-404 (1994).
  14. Ramos, C., et al. FGF-1 reverts epithelial-mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway . American journal of physiology. Lung cellular and molecular physiology. 299, L222-L231 (2010).
  15. Ren, Z. X., Yu, H. B., Li, J. S., Shen, J. L., Du, W. S. Suitable parameter choice on quantitative morphology of A549 cell in epithelial-mesenchymal transition. Bioscience reports. 35, (2015).
  16. Brinkmann, V., Kinzel, B., Kristofic, C. TCR-independent activation of human CD4+ 45RO- T cells by anti-CD28 plus IL-2: Induction of clonal expansion and priming for a Th2 phenotype. Journal of immunology. 156, 4100-4106 (1996).
  17. Krug, M. S., Berger, S. L. First-strand cDNA synthesis primed with oligo(dT). Methods in enzymology. 152, 316-325 (1987).
  18. Morozumi, M., et al. Simultaneous detection of pathogens in clinical samples from patients with community-acquired pneumonia by real-time PCR with pathogen-specific molecular beacon probes. Journal of clinical microbiology. 44, 1440-1446 (2006).
  19. Smith, P. K., et al. Measurement of protein using bicinchoninic acid. Analytical biochemistry. 150, 76-85 (1985).
  20. Wiechelman, K. J., Braun, R. D., Fitzpatrick, J. D. Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Analytical biochemistry. 175, 231-237 (1988).
  21. Ursitti, J. A., Mozdzanowski, J., Speicher, D. W., et al. Electroblotting from polyacrylamide gels. Current protocols in protein science. Chapter 10, Unit 10.7 (2001).
  22. Kricka, L. J., Voyta, J. C., Bronstein, I. Chemiluminescent methods for detecting and quantitating enzyme activity. Methods in enzymology. 305, 370-390 (2000).
  23. Noguchi, S., et al. An integrative analysis of the tumorigenic role of TAZ in human non-small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 20, 4660-4672 (2014).
  24. Kasai, H., Allen, J. T., Mason, R. M., Kamimura, T., Zhang, Z. TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respiratory research. 6, 56 (2005).
  25. Chen, X., et al. Integrin-mediated type II TGF-beta receptor tyrosine dephosphorylation controls SMAD-dependent profibrotic signaling. The Journal of clinical investigation. 124, 3295-3310 (2014).
  26. Saito, A., et al. An integrated expression profiling reveals target genes of TGF-beta and TNF-alpha possibly mediated by microRNAs in lung cancer cells. PloS one. 8, e56587 (2013).
  27. Dvashi, Z., et al. Protein phosphatase magnesium dependent 1A governs the wound healing-inflammation-angiogenesis cross talk on injury. The American journal of pathology. 184, 2936-2950 (2014).
  28. Hallgren, O., et al. Enhanced ROCK1 dependent contractility in fibroblast from chronic obstructive pulmonary disease patients. Journal of translational medicine. 10, 171 (2012).
  29. Kobayashi, T., et al. Matrix metalloproteinase-9 activates TGF-beta and stimulates fibroblast contraction of collagen gels. American journal of physiology. Lung cellular and molecular physiology. 306, L1006-L1015 (2014).
  30. Horie, M., et al. Histamine induces human lung fibroblast-mediated collagen gel contraction via histamine H1 receptor. Experimental lung research. 40, 222-236 (2014).
  31. Kohyama, T., et al. PGD(2) modulates fibroblast-mediated native collagen gel contraction. American journal of respiratory cell and molecular biology. 27, 375-381 (2002).
  32. Muir, A. B., et al. Esophageal epithelial cells acquire functional characteristics of activated myofibroblasts after undergoing an epithelial to mesenchymal transition. Experimental cell research. 330, 102-110 (2015).
  33. Zhong, Q., et al. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. American journal of respiratory cell and molecular biology. 45, 498-509 (2011).
  34. Liu, X. Inflammatory cytokines augments TGF-beta1-induced epithelial-mesenchymal transition in A549 cells by up-regulating TbetaR-I. Cell motility and the cytoskeleton. 65, 935-944 (2008).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

112 1 TGF 1 EMT TNF

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。