JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

Here, we present a novel humanized mouse liver model generated in Alb-toxin receptor mediated cell knockout (TRECK)/SCID mice following the transplantation of immature and expandable human hepatic stem cells.

摘要

A novel animal model involving chimeric mice with humanized livers established via human hepatocyte transplantation has been developed. These mice, in which the liver has been repopulated with functional human hepatocytes, could serve as a useful tool for investigating human hepatic cell biology, drug metabolism, and other preclinical applications. One of the key factors required for successful transplantation of human hepatocytes into mice is the elimination of the endogenous hepatocytes to prevent competition with the human cells and provide a suitable space and microenvironment for promoting human donor cell expansion and differentiation. To date, two major liver injury mouse models utilizing fumarylacetoacetate hydrolase (Fah) and uroplasminogen activator (uPA) mice have been established. However, Fah mice are used mainly with mature hepatocytes and the application of the uPA model is limited by decreased breeding. To overcome these limitations, Alb-toxin receptor mediated cell knockout (TRECK)/SCID mice were used for in vivo differentiation of immature human hepatocytes and humanized liver generation. Human hepatic stem cells (HpSCs) successfully repopulated the livers of Alb-TRECK/SCID mice that had developed lethal fulminant hepatic failure following diphtheria toxin (DT) treatment. This model of a humanized liver in Alb-TRECK/SCID mice will have functional applications in studies involving drug metabolism and drug-drug interactions and will promote other in vivo and in vitro studies.

引言

Mice are commonly used for pharmaceutical testing since biomedical research in humans is restricted1; however, these models are not always useful since they may inaccurately simulate the effects observed in humans. Most drugs in current medical use are metabolized primarily in the liver. However, the same drug can be metabolized into different metabolites in mouse and human livers because of inter-species differences. Thus, it is often difficult to determine during development whether a potential drug poses any risks for clinical applications2,3.

To address this problem, "humanized" mouse livers have been developed by growing human liver cells inside mice4-6; these models exhibit drug responses similar to those observed in the human liver. The primary mouse models currently used for humanized liver generation include uroplasminogen activator (uPA+/+) mice4,7, fumarylacetoacetate hydrolase (Fah−/−) mice6, and the recently reported thymidine kinase (TK-NOG) mice.

However, previous reports have shown that transplanted human immature cells or stem cells are less competitive than adult human hepatocytes in Alb-uPA tg(+/−)Rag2(−/−) mouse livers8-10. Moreover, Fah−/− mice provide a growth advantage only for differentiated hepatocytes and not for immature liver progenitor cells11. The transplantation of human hepatic stem cells (HpSCs) into TK-NOG mice in the lab has been unsuccessful. Hence, no useful mouse model for the efficient engraftment of human immature liver cells currently exists.

Thus, we developed a novel Alb-TRECK/SCID mouse model that could be efficiently repopulated with human immature hepatocytes. This transgenic mouse model expresses human heparin-binding EGF-like growth factor (HB-EGF) receptors under the control of a liver cell-specific albumin promoter. Following the administration of diphtheria toxin (DT), these mice develop fulminant hepatitis due to conditional ablation of hepatocytes, enabling donor cell residency and proliferation12. Although mouse hepatocytes have been successfully transplanted into Alb-TRECK/SCID mice in previous studies13,14, the generation of a humanized liver using Alb-TRECK/SCID mice has yet to be reported.

In this study, humanized livers were generated in Alb-TRECK/SCID mice via transplantation of HpSCs. This humanized liver provides an in vivo environment for universal stem cell differentiation and the ability to predict human drug metabolism patterns and drug-drug interactions.

研究方案

所有的动物实验过程是按照横滨市立大学的动物保护准则进行的。

1.代急性肝损伤小鼠模型

  1. 加入1 ml phenolized 0.85%NaCl溶液(0.6克苯酚在100毫升0.85%NaCl溶液),以1毫克白喉毒素(DT),制成1毫克/毫升DT原液。注:DT以1mg / ml的浓度可在3℃至8℃储存约2年。
  2. 连续稀释phenolized 0.85%的NaCl溶液中的1mg / ml的DT原液至0.3微克/毫升DT和制备0.3微克/毫升DT溶液作为工作溶液的等分试样。注:该工作液应新鲜配制。
  3. 进行使用亚致死剂量(〜50%致死)实验,辖8周龄小鼠DT的1.5微克/千克的剂量。
    1. 通过按住鼠标背卧执行DT腹腔注射,并插入业务承包商Ë膝盖的弯曲下面,左面或中线的权利。避免中线以防止膀胱的渗透。角针在约45°到主体。
    2. 使用胰岛素注射器,注射的老鼠用100微升每个20 G鼠标重量的新鲜0.3微克/毫升的DT。例如,18-G鼠标应该接受90微升0.3微克/毫升DT解决方案。
  4. 在48小时后DT注射,通过将鼠标在一个限制器和温热小鼠尾部在37℃水浴中约10分钟,以扩张血管收集从尾静脉血液。然后,制成1毫米切口,从用锋利的手术刀刀片尖端的尾2厘米并用微毛细管收集血液。
    1. 离心含有血液的微毛细管在1500×g离心5分钟,并通过分离上清液和细胞沉淀收集血清。
  5. 1:20稀释的小鼠血清中吸取50微升到GOT / AST-PIII幻灯片。使用根据制造商的协议的多功能自动干化学分析仪在650nm测定反应产物(蓝色染料)的吸光度。
    注:读出谷草转氨酶(AST)的/自动显示谷草转氨酶(GOT)的活性。后2天DT注射,将小鼠的约60%12,000表现AST值 - 16000 IU / L,被认为是从急性肝损伤痛苦。这些小鼠被转移至新笼子并用作细胞移植。

2.人力肝干细胞的制备

  1. 隔离从人初级胎儿肝细胞与使用CDCP1,CD90和CD66细胞抗原以获得CDCP1 + CD90 + CD66-亚群细胞分选仪人肝干细胞,然后接种于涂覆IV型胶原的培养皿的分离的细胞群,如先前报道15。使用胚胎的人类首要胎肝细胞周14至18岁之间的年龄。
  2. 收集培养至80%的人类肝干细胞 - 90%汇合于100毫米的培养皿,吸出培养基,用10毫升的PBS洗涤细胞,然后取出PBS。 Trypsinize用2ml的0.05%胰蛋白酶/ EDTA溶液中的细胞5分钟,在37℃下。注意:在大于90%汇合的细胞不适合于细胞移植自细胞分化可能在小鼠中影响其增殖能力。
  3. 监测细胞分散液的显微镜下的状态。当细胞似乎漂浮或自由流动,通过加入8毫升含有10%FBS的DMEM / F12的停止酶消化。
  4. 悬浮细胞慢慢使用10毫升血清吸管将细胞转移到15mL的锥形管中。离心细胞,在100 xg离心5分钟,4℃。
  5. 小心重悬细胞沉淀在含有10%FBS的10的10ml DMEM / F12,并确定使用显微镜计数室的细胞数。
  6. 划分细胞向每50μl的PBS等份为每个单独的小鼠的1.0×10 6个细胞,并在冰上储存直至移植。

3.人肝脏干细胞内移植

  1. 将干净的笼子里37℃的电热垫。
  2. 通过将它放置在喷嘴的下面 - (在2L每分钟的氧气的1.5%(体积/体积)1)麻醉小鼠用异氟醚吸入。另外,使用含有用纱布浸湿异氟醚管。
    1. 确保鼠标轻轻捏后足垫麻醉。如果膝反射是引出,将鼠标回到室内。使用对眼睛兽医药膏,以防止干燥时的麻醉下。
  3. 使用电动推剪剃手术部位,并应用70%(体积/体积)乙醇和聚维酮碘消毒。然后使在左侧面只是肋的肋缘下方1厘米的皮肤切口,接着在切口腹壁,以及腹膜。
  4. 小心露出脾脏。用100微升注射注射器带32 G1 / 2英寸的针直接注入1.0×10 6人肝干细胞在50μlPBS中进入各小鼠的脾脏。倾斜以5°角的注射针头。
    1. 确保注入的深度为脾脏不到一半的厚度。针应在一端(头部)进入脾脏,并在另一端(尾)沉积的细胞。
  5. 为了防止注射后的细胞泄漏,用手指2分钟轻轻地施加压力,然后取出针。
  6. 放置脾放回鼠标主体和与正常运行缝合的肌肉和皮肤关闭腔。
  7. 转移的小鼠成37℃预热的笼立即移植以下。为了保证鼠标能够舒适地呼吸,将鼠标在其一侧的笼子里,一排尿笼床上用品和手术部位之间的接触。
  8. 监测小鼠直到麻醉消退确保缝线保持关闭并且小鼠返回到手术前的条件。
  9. 确保将小鼠具有正常的饮用水和食品。 1小时后,返回笼动物中心的鼠标间,每日监测小鼠。

4.移植的检测人肝干在小鼠肝细胞衍生肝细胞

注:对于以下步骤,使用安乐死颈椎脱位氯胺酮和甲苯噻嗪过量的所有动物。

  1. 在4 - 第6周后移植,安乐死的小鼠和通过同时切割表皮和使用手术剪筋膜打开腹腔。
  2. 解剖结缔组织腹膜以上,使用剪刀作为吊具,并切断腹膜沿白线,打开腹腔腔。
  3. 解除胸骨用镊子,穿刺隔膜,并通过胸骨的每一侧穿过宫颈腰带切开。
  4. 断绝对肝脏的胸侧的腔静脉,并通过在向前方向肝脏拉食道。为了除去肝脏去除隔膜。
    注意:请小心保持剪刀提示,以防止下胸器官的损害向上指出。胸腺有偶尔紧贴胸骨背侧的趋势,这一点必须小心避免。
  5. 使用隔膜作为手柄,启动拉动肝脏出腹腔。内部腔静脉将举行到位肝脏。切内部腔静脉;要小心,不要过早解放右肾上腺。
    注:老鼠有四裂肝脏包括中叶,左叶,右叶和尾状叶。胆悬浮在小分叉中叶。
  6. 在路口彼此分开的瓣,并根据制造商的方案在最佳切割温度(OCT)化合物嵌入其中。冻结包含在低温恒温器的金属网格肝组织的十月
  7. 用切低温恒温器5微米厚的切片样本在-18°C和安装它们RT显微镜载玻片。在-80℃保存的股票。制备用于苏木精和曙红(H&E)和根据先前报道的方法16免疫荧光染色的幻灯片。

5.人力分泌白蛋白的检测和嵌合率的计算

  1. 来测量人体肝重构,执行人白蛋白ELISA使用血清,并根据制造商的说明一个人白蛋白ELISA试剂盒。
  2. 通过实时计算人源化肝脏的嵌合率表达水平的PCR分析在整个-人源化肝脏。确定相对前人特异性肌动蛋白的人类 - 小鼠横动蛋白PRESSION水平比率(比率1)和小鼠 - 特异性肌动蛋白的人类 - 小鼠横肌动蛋白的比率(比例为2)。嵌合率计算为比率1 /(比1+比率2)。

结果

ALB-Treck技术/ SCID小鼠的肝细胞表达的白蛋白启动子的控制下的人类DT受体HB-EGF的基因并显示出下列DT给药12细胞毒性作用。为了评估DT处理对肝损伤的影响,DT剂量为1.5微克/公斤,分别注入8周龄ALB-Treck技术/ SCID小鼠和在肝脏中48小时后DT给药的病理改变进行组织学评估。与对照组(不与DT处理)相比,DT-治疗的小鼠表现出与血清AST活性升高拥堵修正杂乱无章的肝架构?...

讨论

最近的研究已经表明,在小鼠肝脏可以与人肝细胞,包括成人肝细胞和增殖性肝干细胞17被重新填充。这些重新填充肝脏已被用作临床前试验模型的药物代谢试验和药物发现和开发18;此外,他们提供了用于细胞的成熟和分化19 的体内环境。本研究的主要目的是要产生,允许人未成熟肝细胞增殖,成熟和分化,对采集的药物代谢活动的新颖性肝病的小鼠模型。

披露声明

The authors have no competing financial interests to disclose.

致谢

We wish to thank the Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, for providing the mice. We also thank S. Aoyama and Y. Adachi of the ADME (Absorption, Distribution, Metabolism, Excretion) & Toxicology Research Institute, Sekisui Medical Company Ltd., Japan, and K. Kozakai and Y. Yamada for assistance with LC-MS/MS analysis. This work was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan to Y-W.Z. (18591421, 20591531, and 23591872); by the Jiangsu innovative and entrepreneurial project for the introduction of high-level talent and the Jiangsu science and technology planning project (BE2015669); and by grants to H.T. for Strategic Promotion of Innovative Research and Development (S-innovation, 62890004) from the Japan Science and Technology Agency.

材料

NameCompanyCatalog NumberComments
Human albuminSigmaA6684Mouse
Human CK19DakoM088801Mouse
Human nucleiMilliporeMAB1281Mouse
Human CK8/18ProgenGP11Guinea pig
CDCP1Biolegend324006Mouse
CD90BD559869Mouse
CD66BD551479Mouse
GOT/AST-PIIIFujifilm14A2X10004000009
DMEM/F-12Gibco11320-033
FBSBiowestS1520
0.05% Trypsin-EDTA Gibco25300-054
Diphtheria ToxinSigmaD0564-1MG
Human Albumin ELISA KitBethyl LaboratoriesE88-129
Syringe (1 ml)TerumoSS-01T
32G 1/2" needleTSKPRE-32013
O.C.T.Compound(118 ml)Sakura Finetek Japan4583
MoFlo high-speed cell sorterBeckman CoulterB25982
DRI-CHEM 7000Fujifilm14B2X10002000046

参考文献

  1. Muruganandan, S., Sinal, C. Mice as clinically relevant models for the study of cytochrome P450-dependent metabolism. Clin. Pharmacol. Ther. 83, 818-828 (2008).
  2. Nishimura, T., et al. Using chimeric mice with humanized livers to predict human drug metabolism and a drug-drug interaction. J. Pharmacol. Exp. Ther. 344, 388-396 (2013).
  3. Suemizu, H., et al. Establishment of a humanized model of liver using NOD/Shi-scid IL2Rgnull mice. Biochem. Biophys. Res. Commun. 377, 248-252 (2008).
  4. Tateno, C., et al. Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am. J. Pathol. 165, 901-912 (2004).
  5. Hasegawa, M., et al. The reconstituted 'humanized liver'in TK-NOG mice is mature and functional. Biochem. Biophys. Res. Commun. 405, 405-410 (2011).
  6. Azuma, H., et al. Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat. Biotechnol. 25, 903-910 (2007).
  7. Rhim, J. A., Sandgren, E. P., Degen, J. L., Palmiter, R. D., Brinster, R. L. Replacement of diseased mouse liver by hepatic cell transplantation. Science. 263, 1149-1152 (1994).
  8. Haridass, D., et al. Repopulation efficiencies of adult hepatocytes, fetal liver progenitor cells, and embryonic stem cell-derived hepatic cells in albumin-promoter-enhancer urokinase-type plasminogen activator mice. Am. J. Pathol. 175, 1483-1492 (2009).
  9. Sharma, A. D., et al. Murine embryonic stem cell-derived hepatic progenitor cells engraft in recipient livers with limited capacity of liver tissue formation. Cell. Transplant. 17, 313-323 (2008).
  10. Peltz, G. Can 'humanized' mice improve drug development in the 21st century. Trends Pharmacol. Sci. 34, 255-260 (2013).
  11. Zhu, S., et al. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature. 508, 93-97 (2014).
  12. Saito, M., et al. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol. 19, 746-750 (2001).
  13. Ishii, T., et al. Transplantation of embryonic stem cell-derived endodermal cells into mice with induced lethal liver damage. Stem Cells. 25, 3252-3260 (2007).
  14. Machimoto, T., et al. Improvement of the survival rate by fetal liver cell transplantation in a mice lethal liver failure model. Transplantation. 84, 1233-1239 (2007).
  15. Taniguchi, H., Zheng, Y. -. W. Human hepatic stem cell, method for preparation of the same, method for induction of differentiation of the same, and method for utilization of the same. Japan Patent. , (2015).
  16. Zhang, R. -. R., et al. Human hepatic stem cells transplanted into a fulminant hepatic failure Alb-TRECK/SCID mouse model exhibit liver reconstitution and drug metabolism capabilities. Stem Cell Res. Ther. 6, 1-12 (2015).
  17. Strom, S. C., Davila, J., Grompe, M. Chimeric Mice with Humanized Liver: Tools for the Study of Drug Metabolism, Excretion, and Toxicity. Hepatocytes. , 491-509 (2010).
  18. Zhang, D., Luo, G., Ding, X., Lu, C. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm. Sin. B. 2, 549-561 (2012).
  19. Nowak, G., et al. Identification of expandable human hepatic progenitors which differentiate into mature hepatic cells in vivo. Gut. 54, 972-979 (2005).
  20. Naglich, J. G., Metherall, J. E., Russell, D. W., Eidels, L. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell. 69, 1051-1061 (1992).
  21. Mitamura, T., Higashiyama, S., Taniguchi, N., Klagsbrun, M., Mekada, E. Diphtheria toxin binds to the epidermal growth factor (EGF)-like domain of human heparin-binding EGF-like growth factor/diphtheria toxin receptor and inhibits specifically its mitogenic activity. J. Biol. Chem. 270, 1015-1019 (1995).
  22. Liu, Y., Yang, R., He, Z., Gao, W. -. Q. Generation of functional organs from stem cells. Cell Regener. 2, 1 (2013).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

114 Treck SCID

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。