このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
Here, we present a novel humanized mouse liver model generated in Alb-toxin receptor mediated cell knockout (TRECK)/SCID mice following the transplantation of immature and expandable human hepatic stem cells.
A novel animal model involving chimeric mice with humanized livers established via human hepatocyte transplantation has been developed. These mice, in which the liver has been repopulated with functional human hepatocytes, could serve as a useful tool for investigating human hepatic cell biology, drug metabolism, and other preclinical applications. One of the key factors required for successful transplantation of human hepatocytes into mice is the elimination of the endogenous hepatocytes to prevent competition with the human cells and provide a suitable space and microenvironment for promoting human donor cell expansion and differentiation. To date, two major liver injury mouse models utilizing fumarylacetoacetate hydrolase (Fah) and uroplasminogen activator (uPA) mice have been established. However, Fah mice are used mainly with mature hepatocytes and the application of the uPA model is limited by decreased breeding. To overcome these limitations, Alb-toxin receptor mediated cell knockout (TRECK)/SCID mice were used for in vivo differentiation of immature human hepatocytes and humanized liver generation. Human hepatic stem cells (HpSCs) successfully repopulated the livers of Alb-TRECK/SCID mice that had developed lethal fulminant hepatic failure following diphtheria toxin (DT) treatment. This model of a humanized liver in Alb-TRECK/SCID mice will have functional applications in studies involving drug metabolism and drug-drug interactions and will promote other in vivo and in vitro studies.
Mice are commonly used for pharmaceutical testing since biomedical research in humans is restricted1; however, these models are not always useful since they may inaccurately simulate the effects observed in humans. Most drugs in current medical use are metabolized primarily in the liver. However, the same drug can be metabolized into different metabolites in mouse and human livers because of inter-species differences. Thus, it is often difficult to determine during development whether a potential drug poses any risks for clinical applications2,3.
To address this problem, "humanized" mouse livers have been developed by growing human liver cells inside mice4-6; these models exhibit drug responses similar to those observed in the human liver. The primary mouse models currently used for humanized liver generation include uroplasminogen activator (uPA+/+) mice4,7, fumarylacetoacetate hydrolase (Fah−/−) mice6, and the recently reported thymidine kinase (TK-NOG) mice.
However, previous reports have shown that transplanted human immature cells or stem cells are less competitive than adult human hepatocytes in Alb-uPA tg(+/−)Rag2(−/−) mouse livers8-10. Moreover, Fah−/− mice provide a growth advantage only for differentiated hepatocytes and not for immature liver progenitor cells11. The transplantation of human hepatic stem cells (HpSCs) into TK-NOG mice in the lab has been unsuccessful. Hence, no useful mouse model for the efficient engraftment of human immature liver cells currently exists.
Thus, we developed a novel Alb-TRECK/SCID mouse model that could be efficiently repopulated with human immature hepatocytes. This transgenic mouse model expresses human heparin-binding EGF-like growth factor (HB-EGF) receptors under the control of a liver cell-specific albumin promoter. Following the administration of diphtheria toxin (DT), these mice develop fulminant hepatitis due to conditional ablation of hepatocytes, enabling donor cell residency and proliferation12. Although mouse hepatocytes have been successfully transplanted into Alb-TRECK/SCID mice in previous studies13,14, the generation of a humanized liver using Alb-TRECK/SCID mice has yet to be reported.
In this study, humanized livers were generated in Alb-TRECK/SCID mice via transplantation of HpSCs. This humanized liver provides an in vivo environment for universal stem cell differentiation and the ability to predict human drug metabolism patterns and drug-drug interactions.
全ての動物実験手順は、横浜市立大学の動物保護ガイドラインに従って行いました。
急性肝障害モデルマウスの1世代
ヒト肝幹細胞の調製
ヒト肝幹細胞の3脾臓内移植
移植されたヒト肝4.検出は、マウス肝臓における細胞由来肝細胞を幹
注:以下の手順については、頸椎脱臼が続くケタミンとキシラジンの過剰摂取を使用して、すべての動物を安楽死させます。
5.ヒトアルブミンの分泌の検出とキメラ率の計算
ALB-トレック/ SCIDマウスの肝細胞は、アルブミンプロモーターの制御下で、ヒトDT受容体HB-EGF遺伝子を発現し、DT投与12以下の細胞毒性効果を発揮します。肝障害に対するDT処置の効果を評価するために、1.5μgの/キロのDT投与量は、8週齢のアルプ・トレック/ SCIDマウスに注射し、肝臓48時間後のDT投与の病理学的変化を組織学的に評価しました。 (いないDTで処?...
最近の研究は、マウスの肝臓は、成人肝細胞および増殖性肝幹細胞17を含むヒト肝細胞で再増殖することができることを示しています。これらの再増殖した肝臓は薬物代謝試験および薬物の発見と開発18のための前臨床実験モデルとして使用されています。加えて、それらは、細胞成熟および分化19のためのインビボ環境を提供しています。本研究の主要な目的?...
The authors have no competing financial interests to disclose.
We wish to thank the Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, for providing the mice. We also thank S. Aoyama and Y. Adachi of the ADME (Absorption, Distribution, Metabolism, Excretion) & Toxicology Research Institute, Sekisui Medical Company Ltd., Japan, and K. Kozakai and Y. Yamada for assistance with LC-MS/MS analysis. This work was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan to Y-W.Z. (18591421, 20591531, and 23591872); by the Jiangsu innovative and entrepreneurial project for the introduction of high-level talent and the Jiangsu science and technology planning project (BE2015669); and by grants to H.T. for Strategic Promotion of Innovative Research and Development (S-innovation, 62890004) from the Japan Science and Technology Agency.
Name | Company | Catalog Number | Comments |
Human albumin | Sigma | A6684 | Mouse |
Human CK19 | Dako | M088801 | Mouse |
Human nuclei | Millipore | MAB1281 | Mouse |
Human CK8/18 | Progen | GP11 | Guinea pig |
CDCP1 | Biolegend | 324006 | Mouse |
CD90 | BD | 559869 | Mouse |
CD66 | BD | 551479 | Mouse |
GOT/AST-PIII | Fujifilm | 14A2X10004000009 | |
DMEM/F-12 | Gibco | 11320-033 | |
FBS | Biowest | S1520 | |
0.05% Trypsin-EDTA | Gibco | 25300-054 | |
Diphtheria Toxin | Sigma | D0564-1MG | |
Human Albumin ELISA Kit | Bethyl Laboratories | E88-129 | |
Syringe (1 ml) | Terumo | SS-01T | |
32G 1/2" needle | TSK | PRE-32013 | |
O.C.T.Compound(118 ml) | Sakura Finetek Japan | 4583 | |
MoFlo high-speed cell sorter | Beckman Coulter | B25982 | |
DRI-CHEM 7000 | Fujifilm | 14B2X10002000046 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved