登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

这里介绍的是一个表皮与真皮分离的协议,用于评估炎症调解器的产生。炎症后,大鼠后爪表皮在4°C下由热利辛从真皮中分离出来。 然后,通过RT-PCR进行表皮分析,通过西方污点和免疫造血术进行蛋白质评估。

摘要

在皮肤损伤、炎症和/或敏感期间,需要易于使用和廉价的技术来确定炎症调解人和神经营养素的特定产地。本研究的目标是使用热解酶(一种在4°C下活跃的蛋白酶)来描述表皮-皮肤分离协议。 为了说明这个程序,斯普拉格道利大鼠麻醉,右后爪注射卡拉吉南。注射后6小时和12小时,有炎症和天真的老鼠被安乐死,一块后爪,斑点皮肤被放置在寒冷的Dulbecco的改良鹰介质。然后,在地下室膜上用氯化钙将热碱与真皮分离。接下来,真皮由微分切钳固定,表皮被轻轻地调戏。组织部分的甲苯蓝色染色表明表皮与地下室膜上的真皮干净分离。所有角膜细胞层保持完好无损,表皮干脊以及皮肤的凹痕被清晰观察。定性和实时RT-PCR用于确定神经生长因子和间柳金-6表达水平。最终进行西式印迹和免疫造血术,以检测神经生长因子的数量。本报告表明,冷热解素消化是将表皮与真皮分离的有效方法,用于评估炎症期间的mRNA和蛋白质变化。

引言

从皮肤对炎症调解人和神经营养因子的评价可以受到限制,因为在发炎的真皮和表皮1,2,3中发现的细胞类型的异质性。最近对涉及两层分离或进行细胞分离评价的几种酶、化学、热或机械技术进行了审查。酸、碱、中性盐和热量可以迅速将表皮与真皮分开,但细胞外肿胀通常发生在5、6。胰腺素、弹性酶、角蛋白酶、拼贴酶、前列腺素、脱口香剂和热解酶是用于表皮-皮肤分离的酶4、7。特普辛和其他大尺度蛋白酶在37~40°C下活跃,但必须仔细监测,防止表皮层分离。迪斯帕塞在拉米纳登萨切开表皮,但在寒冷的4,8或更短的时间点在37°C 4,9中分离需要24小时。所有这些技术的一个限制特征是组织形态的潜在破坏和mRNA和蛋白质的完整性损失。

为了保持mRNA和蛋白质的完整性,应在寒冷中短期进行皮肤分离方法。在评估炎症研究的皮肤分离技术时,热解酶是一种有效的酶,在寒冷的温度下将表皮与真皮分离。热蛋白在4°C下活跃,将表皮除颤体与拉米娜卢西达分离,并将表皮与真皮在1~3小时4、8、10内分离。本报告的目标是优化使用热解质将发炎的老鼠表皮与真皮分离,以检测炎症调解人和神经营养因子的mRNA和蛋白质水平。已提出若干初步报告,包括11、12、13、14、15。这份手稿的目的是描述使用热解质的最佳皮肤分离技术,并证明检测1)炎症标记,2)间柳金-6(IL-6)mRNA,和3)神经生长因子(NGF)mRNA和蛋白质在大鼠表皮与卡拉吉南诱发炎症(C-II)16,17。使用完整的Freund的辅助模型的初步报告显示,NGF mRNA和蛋白质水平在炎症15期间提前增加。在小鼠中,皮肤敏感与牛酮的局部应用导致IL-6 mRNA使用原位杂交36的早期上升。IL-6和NGF都与C-II18、19有牵连,但是没有报告描述IL-6或NGF的mRNA或蛋白质水平,特别是从C-II急性期的表皮。

热解素技术价格低廉,性能简单明了。此外,在炎症过程中,表皮与真皮的热解质分离允许mRNA、西式污点和炎症介导器和神经营养因子的免疫史化学分析。研究者应该能够在皮肤炎症的临床前和临床研究中轻松使用这种技术。

研究方案

该协议遵循俄克拉荷马州立大学健康科学中心(#2016-03)的动物护理指南。

1. 卡拉吉南诱发炎症 (C-II)

  1. 麻醉雄性和/或雌性斯普拉格道利大鼠(200×250克;8×9周大)与异黄酮(或注射麻醉剂)。
  2. 触摸角膜并轻轻捏左后爪,检查麻醉深度。当动物被适当麻醉时,不会观察到角膜或爪子的反应。
  3. 皮下注射正确的玻璃,后爪与100微升的1%(w/v)+卡拉吉南稀释在磷酸盐缓冲盐水(PBS)20。
    1. 确保使用适当的控制,如天真的老鼠没有异黄素在本报告中。初步研究表明,有或没有异黄素的天真大鼠具有与表皮IL-6和NGF相同的基底表达。
      注:天真的老鼠是炎症研究的首选对照,因为皮下盐水或PBS引起局部炎症23,37。
  4. 评估C-II大鼠的水肿,以保证卡拉吉南(1)20的有效性。通过用卡钳测量后爪骨质厚度来确定水肿的量。
  5. 在6×12小时,安乐死大鼠与CO2( 或注射麻醉过量),并削减1毫米x2毫米的光泽后爪皮肤与锋利的手术刀。如果使用毛茸茸的皮肤,则在切割 1 mm x 2 mm 皮肤之前剃须。
    注意:确保根据具体研究选择适当的时间点。
  6. 使用微分化钳,将皮肤转移到1兆升的冷杜尔贝科的改良鹰中(DMEM)在冰上的微中心管,并保持冷15-60分钟。

2. 表皮和真皮的热解素分离

  1. 准备并激活热解素。
    1. 准备热溶胶溶液,在 pH = 8(浓度 500 μg/mL)下将 5 毫克 的地巴霉素三叶草 添加到 10 mL 的 PBS 中。
    2. 通过在 10 mL 蒸馏 H2 O 中加入 1.11 克氯化钙 (CaCl2无水性), 准备 1M 溶液。
    3. 为防止热解铝的自解,在 10 mL 的热解液中加入 10 μL 氯化钙。氯化钙最终浓度为1米。
    4. 阿利奎特1mL活性热解素进入冰上24井细胞培养板的10口井。
  2. 使用热解酶消化将表皮与真皮分离。
    1. 使用微分体钳,将一个皮肤样本转移到每性热解辛井中。确保不要将皮肤浸入热解液中。
    2. 轻轻轻点井侧的皮肤,帮助将皮肤样本从钳子中释放到热解液上。
    3. 将皮肤漂浮到热解剂溶液中, 层角膜 (外表皮)朝上,真皮朝下。关键是真皮朝下,否则不会发生有效的分离。
      注:热解质孵化的时间量必须由最终用户以经验确定。来自斯普拉格道利大鼠(200+250克;8+9周大)的后爪皮肤,通常需要2.0+2.5小时的分离。孵化时间预计将因物种和年龄而异。
    4. 在热解酶中适当孵育时间后,使用微分切钳将一个皮肤样本转移到 6 井细胞培养板的井中,该井的冷 (4°C) DMEM 为 7+8 mL。这为表皮与真皮分离留出更多空间。
    5. 将皮肤浸入 DMEM 中。
    6. 轻轻地用钳子刷皮肤周围,直到在边界观察到近半透明表皮。如果无法实现此目标,将皮肤样本返回热解素溶液,再持续 15 至 30 分钟。
    7. 一旦表皮明显地从真皮分离,然后小心地用微分切钳将表皮和真皮同时抱住,然后非常缓慢地将表皮从真皮中拉出。
    8. 评估孤立表皮的半透明性,并确保其在光学上是一致的。请参 阅图 2, 例如 1 mm x 2 mm 的鼠表皮样本。如果半透明有变异,则未发生适当的分离。
  3. 在分离的表皮和真皮片中使用乙酰胺乙酰酸 (EDTA) 灭活热解压素。
    警告:留在表皮和真皮中的热解压素仍然有效,如果不灭活,可能会损坏层。
    1. 准备 0.5 M EDTA 股票解决方案。为此,将 0.93 g EDTA 缓慢添加到 5 mL 的双蒸馏水中。将氢氧化钠添加到溶液中,直到溶液清除。确保解决方案的 pH 值为 +8.0。
    2. 在 DMEM 中制作 5 m M EDTA 解决方案。将 0.25 mL 的 0.5 M EDTA 库存解决方案添加到 25 mL 的 DMEM 中。
    3. 将分离的表皮和真皮放入 5 m EDTA/DMEM 溶液中,在 4 °C 下放置 30 分钟,以停用热解压素的活动。
  4. 用药理直学8,9,10评估表皮。
    1. 在室温下(RT)用0.8%的皮酸溶液将部分表皮固定在1小时的中性甲醛、4%的副甲醛或0.25%的甲醛中。
    2. 将固定表皮放在 Pbs 中的 10% 蔗糖中, 在 Rt 进行 1 小时的搅拌。
    3. 将表皮冻结在组织嵌入基质中进行分割。使用低温统计器将 14 μm 横截面切割,并在明胶涂层玻璃显微镜滑梯上解冻安装部分。
    4. 90 年代,滑梯上的干燥部分加热并弄脏,并带有甲苯蓝色 (TB; 1% 氯化钠中的 10% 结核病) 工作溶液。带感性安装介质的阿波斯盖片。
    5. 以50xx×250倍的亮场显微镜观察表皮。
      注意:如果发生适当的分离,表皮将从真皮中干净地分离,并检测到五层: 层巴萨莱地层脊柱地层颗粒地层清醒地层角膜。图 3中可以看到分离的老鼠皮肤表皮的例子。

3. 蛋白质提取和西式污点分析

  1. 使用先前公布的协议21对分离的组织样本进行西式印迹。
  2. 将表皮同质化在 50 μL 的裂解缓冲器 (25mM Tris HCl, pH = 7.4, 150 m NaCl, 1 mM EDTA, 5% 甘油, 和 1% Triton X-100) 含有磷酸酶和蛋白酶抑制剂鸡尾酒。
  3. 离心机样品在4°C时以最大速度15分钟,使用蛋白质检测试剂盒评估超高分子的蛋白质浓度。
  4. 将等浓度的蛋白质(30微克)加载到SDS凝胶上,进行电泳,然后将蛋白质转移到硝基纤维素或PVDF膜上。
  5. 块膜与5%牛奶为2小时,并在原发性抗体(老鼠抗NGF,E12,1:1000)中孵育过夜。
  6. 用PBS用PBS洗3倍,每次0.3%补间10分钟,并用标记的二级抗体(例如,标有兔抗鼠IgG的碱性磷酸盐)孵育。
  7. 使用扫描系统评估西式污点信号(例如 ECF 基板和成像平台)。

4. 免疫化学

  1. 将组织样本放在固定剂中,以获得最佳免疫反应:0.96% (w/v) 皮酸和 0.2% (w/v) 甲醛在 0.1 M 磷酸钠缓冲区, pH = 7.32122,23代表 4 小时在 RT. 转移到 10% 蔗糖在 PBS 过夜在 4 °C.
  2. 对组织21、22、23部分进行标准免疫造血术。
  3. 将动物的表皮嵌入嵌入矩阵的单个冷冻块中,并在低温统计上切割 10 30 μm 部分。将部分安装在明胶涂层、玻璃显微镜滑梯上,在 37 °C 下干燥 2 小时。
  4. 在PBS中清洗三个10分钟的冲洗部分,在原发性抗血清中孵育24~96小时,[例如,小鼠抗NGF(E12,1:2000)]和兔子抗蛋白基因产物9.9(PGP 9.5, 1:2000) 稀释在 PBS 包含 0.3% (w/v) 特里顿 X-100 (PBS-T) PBS-T 与 0.5% 牛血清白蛋白 (BSA) 和 0.5% 聚乙烯皮罗酮 (PVP).
  5. 在原发性抗鼠潜伏后,在PBS中冲洗三次10分钟,在亚历克萨氟488驴抗兔IgG(1:1000)和亚历克萨氟555驴抗鼠IgG(1:1000)中潜伏1小时,在PBS-T中稀释。
  6. 在 PBS 中冲洗三次,10 分钟,并贴上覆盖唇,具有不褪色的安装介质,以延缓免疫荧光的褪色。

5. RNA分离和cDNA合成

  1. 在皮肤样本21上执行标准反转录酶聚合酶链反应(RT-PCR)。使用苯酚、瓜尼丁异氰酸酯溶液分离总RNA。
  2. 由莫洛尼穆林白血病病毒逆转录酶进行补充DNA合成。
  3. 使用以下引物序列进行 NGF 和 IL-6 放大:
    恩格夫 (感觉) - 格特加克克克塔加格
    Ngf (反感) - 格特加特克特加特加特加塔克特
    IL-6 (感性) - 盖特盖特加特加特加特格特加特格特格特加特加特格特加特格
    伊尔 - 6 (反感) - 格塔加加加特卡加加加格
  4. 将NGF和IL-6 mRNA的水平与β-actin家政基因进行比较:
    β- 阿克廷 (感觉) - 特格加卡塔加加加格特克特克塔克塔克
    β - 阿克廷 (反感) - 加克克特卡特克塔加特加
  5. 使用热循环器进行定性 RT-PCR 评估,使用 qRT-PCR 系统进行定量实时 PCR (qRT-PCR) 评估。

结果

卡拉吉南注射到大鼠后爪引起典型的炎症症状,如发红和水肿16,17。后爪肿胀是用机械卡钳20测量的。在卡拉吉南治疗之前,每只大鼠的爪子厚度基线值得到,并在6小时和12小时再次测量。与基线值(图1)相比,爪厚显著增加。

鼠光后爪皮的热利辛孵化产生表皮。布莱特菲尔德显微镜用于?...

讨论

研究确定,大鼠后爪光泽皮肤的表皮很容易与真皮分离,使用热解质(0.5 mG/mL)在PBS与1mM氯化钙在4°C为2.5小时。表皮学评估表明,表皮与地下室膜上的真皮分离,表皮山脊完好无损。热蛋白是由Gram阳性(地理热蛋白24产生的细胞外金属蛋白酶。其活动稳定在4°C,但在10,24,25的宽范围温度?...

披露声明

作者没有披露。

致谢

这项研究的资金由国家卫生研究院NIH-AR047410(KEM)提供

材料

NameCompanyCatalog NumberComments
λ-carrageenanMillipore Sigma22049Subcutaneous injection of carrageenan induces inflammation
7500 Fast Real-Time PCR SystemThermo Fisher Scientific4351107For RT-PCR analysis
Calcium chloride (CaCl2), anhydrousMillipore Sigma499609Prevents autolysis of thermolysin
Crystal Mount Aqueous Mounting MediumMillipore SigmaC0612Aqueous mounting medium after toluidine blue staining
Donkey anti-Mouse Alexa Fluor 555Thermo Fisher ScientificA-31570Secondary antibody for immunohistochemistry
Donkey anti-Rabbit IgG, Alexa Fluor 488Thermo Fisher ScientificA-21206Secondary antibody for immunohistochemistry
Dulbecco's Modified Eagle MediumThermo Fisher Scientific11966-025To maintain tissue integrity
Ethylenediaminetetraacetic acidMillipore SigmaE6758Stops thermolysin reaction
Moloney Murine Leukemia Virus (M-MLV) Reverse transcriptasePromegaM1701For complementary DNA synthesis
Mouse anti-NGF Antibody (E-12)Santa Cruz Biotechnologysc-365944For neurotrophin immunohistochemistry
ProLong Gold Antifade MountantThermo Fisher ScientificP36930To retard immunofluorescence quenching
Rabbit anti-PGP 9.5Cedarlane LabsCL7756APFor intraepidermal nerve staining
SAS Sprague Dawley RatCharles RiverStrain Code 400Animal used for inflammation studies
Shandon M-1 Embedding MatrixThermo Fisher Scientific1310TSTissue embedding matrix for tinctorial- and immuno-histochemistry
SimpliAmp Thermal CyclerThermo Fisher ScientificA24811For RT-PCR analysis
SYBR Select Master MixThermo Fisher Scientific4472908For RT-PCR analysis
ThermolysinMillipore SigmaT7902From Geobacillus stearothermophilus
Toluidine BlueMillipore Sigma89640For tinctorial staining for brightfield microscopy
TRIzol ReagentThermo Fisher Scientific15596026For total RNA extraction for RTPCR

参考文献

  1. Choi, J. E., Di Nardo, A. Skin neurogenic inflammation. Seminars in Immunopathology. 40 (3), 249-259 (2018).
  2. Manti, S., Brown, P., Perez, M. K., Piedimonte, G. The role of neurotrophins in inflammation and allergy. Vitamins and Hormones. 104, 313-341 (2017).
  3. Schäkel, K., Schön, M. P., Ghoreschi, K. Pathogenesis of psoriasis. Zeitschrift für Dermatologie, Venerologie, und verwandte Gebiete. 67 (6), 422-431 (2016).
  4. Zou, Y., Maibach, H. I. Dermal-epidermal separation methods: research implications. Archives of Dermatological Research. 310 (1), 1-9 (2018).
  5. Baumberger, J. Methods for the separation of epidermis from dermis and some physiologic and chemical properties of isolated epidermis. Journal of the National Cancer Institute. 2, 413-423 (1942).
  6. Felsher, Z. Studies on the adherence of the epidermis to the corium. Journal of Investigative Dermatology. 8, 35-47 (1947).
  7. Einbinder, J. M., Walzer, R. A., Mandl, I. Epidermal-dermal separation with proteolytic enzymes. Journal of Investigative Dermatology. 46, 492-504 (1966).
  8. Rakhorst, H. A., et al. Mucosal keratinocyte isolation: a short comparative study on thermolysin and dispase. International Association of Oral and Maxillofacial Surgeons. 35 (10), 935-940 (2006).
  9. Tschachler, E., et al. Sheet preparations expose the dermal nerve plexus of human skin and render the dermal nerve end organ accessible to extensive analysis. Journal of Investigative Dermatology. 122 (1), 177-182 (2004).
  10. Walzer, C., Benathan, M., Frenk, E. Thermolysin treatment-a new method for dermo-epidermal separation. Journal of Investigative Dermatology. 92, 78-81 (1989).
  11. Anderson, M. B., Miller, K. E., Schechter, R. Evaluation of rat epidermis and dermis following thermolysin separation: PGP 9.5 and Nav 1.8 localization. Society for Neuroscience Abstract. 584 (9), (2010).
  12. Ibitokun, B. O., Anderson, M. B., Miller, K. E. Separation of corneal epithelium from the stroma using thermolysin: evaluation of corneal afferents. Society for Neuroscience Abstract. , 584 (2010).
  13. Nawani, P., Anderson, M., Miller, K. E. Structure-property relationship of skin. Oklahoma Center for Neuroscience Symposium Abstract. , (2011).
  14. Anderson, M. B., Miller, K. E. Intra-epidermal nerve fiber reconstruction and quantification in three-dimensions. Society for Neuroscience Abstract. 220, 23 (2017).
  15. Gujar, V. K. E., Miller, K. E. Expression of nerve growth factor in adjuvant-induced arthritis (AIA): A temporal study. Society for Neuroscience Abstract. 220, 23 (2017).
  16. Vinegar, R., et al. to carrageenan-induced inflammation in the hind limb of the rat. Federation Proceedings. 46 (1), 118-126 (1987).
  17. Fehrenbacher, J. C., Vasko, M. R., Duarte, D. B. Models of inflammation: Carrageenan- or complete Freund's Adjuvant (CFA)-induced edema and hypersensitivity in the rat. Current Protocols in Pharmacology. , (2012).
  18. Li, K. K., et al. exerts its anti-inflammatory effects associated with suppressing ERK/p38 MAPK and Heme Oxygenase-1 activation in lipopolysaccharide-stimulated RAW 264.7 macrophages and carrageenan-induced mice paw edema. International Immunopharmacology. 54, 366-374 (2018).
  19. Sammons, M. J., et al. Carrageenan-induced thermal hyperalgesia in the mouse: role of nerve growth factor and the mitogen-activated protein kinase pathway. Brain Research. 876 (1-2), 48-54 (2000).
  20. Hoffman, E. M., Miller, K. E. Peripheral inhibition of glutaminase reduces carrageenan induced Fos expression in the superficial dorsal horn of the rat. Neuroscience Letters. 472 (3), 157-160 (2010).
  21. Crosby, H. A., Ihnat, M., Spencer, D., Miller, K. E. Expression of glutaminase and vesicular glutamate transporter type 2 immunoreactivity in rat sacral dorsal root ganglia following a surgical tail incision. Pharmacy and Pharmacology International Journal. 2 (3), 00023 (2015).
  22. Hoffman, E. M., Schechter, R., Miller, K. E. Fixative composition alters distributions of immunoreactivity for glutaminase and two markers of nociceptive neurons Nav1.8 and TRPV1, in the rat dorsal ganglion. Journal of Histochemistry and Cytochemistry. 58 (4), 329-344 (2010).
  23. Hoffman, E. M., Zhang, Z., Schechter, R., Miller, K. E. Glutaminase increases in rat dorsal root ganglion neurons after unilateral adjuvant-induced hind paw inflammation. Biomolecules. 6 (1), 10 (2016).
  24. van den Burg, B., Eijsink, V. Thermolysin and related Bacillus metallopeptidases. Handbook of Proteolytic Enzymes. , 540-553 (2013).
  25. Matthews, B. W. Thermolysin. Encyclopedia of Inorganic and Bioinorganic Chemistry. , (2011).
  26. Hybbinette, S., Boström, M., Lindberg, K. Enzymatic dissociation of keratinocytes from human skin biopsies for in vitro cell propagation. Experimental Dermatology. 8 (1), 30-38 (1999).
  27. Glade, C. P., et al. Multiparameter flow cytometric characterization of epidermal cell suspensions prepared from normal and hyperproliferative human skin using an optimized thermolysin-trypsin protocol. Archives of Dermatological Research. 288 (4), 203-210 (1996).
  28. Sato, J. D., Kan, M. Media for culture of mammalian cells. Current Protocols in Cell Biology. , (2001).
  29. Gragnani, A., Sobral, C. S., Ferreira, L. M. Thermolysin in human cultured keratinocyte isolation. Brazilian Journal of Biology. 67 (1), 105-109 (2007).
  30. Germain, L., et al. Improvement of human keratinocyte isolation and culture using thermolysin. Burns. 19 (2), 99-104 (1993).
  31. Michel, M., et al. Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cellular & Developmental Biology. Animal. 35 (6), 318-326 (1999).
  32. Fassina, G., et al. Autolysis of thermolysin. Isolation and characterization of a folded three-fragment complex. European Journal of Biochemistry. 156 (2), 221-228 (1986).
  33. Petho, G., Reeh, P. W. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiological Reviews. 92 (4), 1699-1775 (2012).
  34. Djouhri, L., et al. Time course and nerve growth factor dependence of inflammation-induced alterations in electrophysiological membrane properties in nociceptive primary afferent neurons. Journal of Neuroscience. 21 (22), 8722-8733 (2001).
  35. Denk, F., Bennett, D. L., McMahon, S. B. Nerve growth factor and pain mechanisms. Annual Review of Neuroscience. 40, 307-325 (2017).
  36. Flint, M. S., Dearman, R. J., Kimber, I., Hotchkiss, S. A. Production and in situ localization of cutaneous tumour necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6) following skin sensitization. Cytokine. 10 (3), 213-219 (1998).
  37. Crosby, H. A., Ihnat, M., Miller, K. E. Evaluating the toxicity of the analgesic glutaminase inhibitor 6-diazo-5-oxo-L-norleucine in vitro and on rat dermal skin fibroblasts. MOJ Toxicology. 1 (1), 00005 (2015).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

175 6 qPCR

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。