JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

本文介绍了通过将微流体集成到舌头上的活体成像窗口 ,用于在体内 进行功能味觉细胞成像的 μTongue(舌上微流体)设备。

摘要

活荧光显微镜是一种广泛用于研究活体动物多细胞动力学的工具。然而,它还没有成功地用于味觉器官。通过将微流体整合到活体舌头成像窗口中,μTongue 在受控接触多种塔斯特的情况下提供 体内 味觉细胞的可靠功能图像。本文介绍了使用 μTongue 系统的详细分步程序。有五个小节:准备 tastant 解决方案、设置微流体模块、样品安装、获取功能图像数据和数据分析。还介绍了一些提示和技术,以解决使用 μTongue 时可能出现的实际问题。

引言

活性荧光显微镜被广泛用于研究活组织上空间动力学。研究人员正在迅速开发基因编码传感器,这些传感器提供生物过程向荧光信号的具体和敏感的转换,这些传感器可以使用广泛可用的光显微镜随时记录下来。虽然大多数啮齿动物的内脏器官都使用显微镜进行了研究,但其在舌头上的成功应用尚未成功

先前对味觉细胞钙成像的研究是通过薄切舌头组织来获得环状味蕾4、5、6,或剥去味觉上皮,获得真菌形态味蕾7、8。这些样本的制备不可避免地具有侵入性,因此神经内侧、渗透障碍和血液循环等自然微环境在很大程度上受到干扰。Choi等人于2015年报告了第一个活体舌头成像窗口,但由于流体干性刺激9引起的运动和光学伪影,无法实现可靠的功能记录。

最近,微流体在舌头上(μTongue)被引入10。该设备集成了微流体系统和鼠标舌头上的成像窗口。通过在整个成像期间达到准稳定状态的塔斯特刺激流,可以最大限度地减少流体运动的伪影(图1)。输入端口由一系列多通道压力控制器馈送,而输出端口则连接到保持 0.3 mL/min 的注射器泵。此外,通过引入钙不敏感指标(tdTomato)和钙指标(GCaMP6)11的比例测量分析,将塔斯特溶液折射指数差异引起的光学伪体最小化。这种设计提供了微观稳定的味觉细胞在体内,即使与流体通道之间的突然切换。因此,μTongue对活体中的老鼠味蕾实施了可靠的功能筛选。

在此协议中,使用 μTongue 详细解释了小鼠真菌味蕾 体内 钙成像的实验程序。首先,介绍了人工唾液和口述溶液的制备。二是建立微流体系统,实现准稳定状态流动。第三,用于在 μTongue 上安装鼠标舌头以允许图像采集的程序已划为。最后,指定了图像分析的每一步,包括横向运动伪影和比例测量的校正。该协议可以很容易地适应任何研究实验室与鼠标设施和双光子显微镜或等效设备。

研究方案

所有外科手术均得到宋庆九大学和首尔国立大学动物护理和使用机构委员会(IACUC)的批准。

1. 准备解决方案:人工唾液和口吃

  1. 通过溶解 2 mM NaCl、5 mM KCl 来准备人工唾液, 3 mM NaHCO3, 3 m M KHCO3, 0.25 m M CaCl2, 0.25 m M MgCl2, 0.12 mM K2HPO2 4,0.12 mM KH2PO4, 和 1.8 mM HCl 在蒸馏水 (>1 L), 并调整溶液的pH值到 7 (见 材料表12
  2. 准备酸味,如酸:10mM柠檬酸:咸: 400 m m Nacl, 可选配备 50 μm 酰胺;甜: 40m 乙酰磺基 K:苦味:通过溶解第1.1步准备的人工唾液中的品尝化学物质,混合5mM奎宁、5mM二甲苯胺和20μM环丙胺。

2. 微流体系统的准备

注:使用加压多通道流体输送系统(参照 图1材料表)将塔斯特送到鼠标舌头上。

  1. 用人工唾液和口香剂填充加压流灌注系统的储层。
  2. 将压缩的气管连接到调节器输入,并在流体输送系统中设置 30 到 50 psi 的气压。
  3. 将调节器的输出压力设置为 0.4 psi,并检查液体是否在此压力下从管中流出。
  4. 将水库的多管连接到 μTongue 的输入端口。
  5. 将 μTongue 的输出端口连接到注射器泵,并以 +300 + 最小-1 提取液体,以建立稳定状态状态。观察 μTongue 下悬挂水滴的恒定体积。根据样本高度调整设置参数值。
  6. 断开压缩的气管并停止注射器泵,直到协议步骤 3 完成。

3. 鼠标准备体内成像(图2)。

注:所有动物制剂都是在白天在实验室工作台的无菌条件下进行的。

  1. 鼠标麻醉
    1. 准备一只7周大或更老的男女老鼠。使用转基因小鼠线,在味觉细胞中表达钙感应荧光蛋白。
    2. 小鼠因麻醉而受约束。将100毫克/千克氯胺酮和10毫克/千克二甲苯的混合物在腹中注射到小鼠13中。
  2. TRITC-dextran (500 kDa) 在 2.5% W/V 磷酸盐缓冲盐水通过逆轨路线静脉注射到小鼠体内,以观察成像过程中的血液循环。
  3. 在鼠标头骨上附加一个头部固定器,以尽量减少移动文物。
    1. 鼠标头被喷洒 70% 的 ETOH,而鼠标则处于上位。用钳子轻轻抬起头部皮肤,用剪刀剪掉约7毫米2。
    2. 清洁头皮周围的头发,去除皮肤下的腹膜,在头骨上涂上即时粘合剂,并附上定制的头部固定器。
    3. 即时粘合剂硬化后,在头部固定器周围涂抹牙科胶水,并用蓝光照明以凝固牙胶。
  4. 将鼠标舌头放在 μTongue 的底部单元上。
    1. 用即时粘合剂将鼠标的下唇连接到 μTongue 的底部单元。
    2. 将鼠标放在板上( 图 1B中的鼠标制备板),并将 μTongue 的底部单元放到柱子上(图 1B中的 μTongue 保留位置)。确保底部单元边缘的孔与柱子对齐。
    3. 将鼠标头固定器拧紧到板上的头部固定器支架上。然后,调整鼠标头和设备之间的距离。使用头固定器支架将鼠标头平稳旋转约 45°。此过程可防止小鼠鼻子与显微镜目标的物理接触。
    4. 使用塑料钳子轻轻绘制鼠标舌头,并将舌头的腹腔侧连接到 μTongue 底部单元的上侧。然后,用湿棉签擦拭鼠舌的表面。
    5. 将一张纸浸泡在人工唾液中,并将其放在鼠舌的裸露表面,以保持湿润状态。
    6. 将弯曲的垫圈放在持有 μTongue 底部两端的柱子上。
  5. 将鼠标制备放在显微镜台上。将暴露的鼠标舌头放置在显微镜目标区域的近似中心下方。请务必不要偏离舞台的动态范围。然后,用螺丝拧紧舞台上的鼠标板。
  6. 将加热垫放在鼠标体下,并将温度保持在 36.5 °C-37.5 °C。 使用温度传感器监控鼠标体温,并使用温度传感器的反馈信号控制加热垫的温度。
  7. 扭动一张薄纸,放在老鼠的嘴边,以防止液体进入老鼠气管。
  8. 从鼠标舌头上取下湿组织,将准备好的 μTongue 放在鼠标舌头上。在舌头上放置一个微流体通道,并调整其位置,通过成像窗口观察舌头表面。
  9. 通过以最小的压缩压力轻轻拧紧两端,确保 μTongue 的安全。

4. 成像采集

  1. 使用前打开 920 nm 双光子激光器和显微镜。
  2. 在显微镜上安装浸水目标(16 倍、NA 0.80 或 25 倍、NA 1.1)。将蒸馏水滴在 μTongue 的成像窗口上,沉浸在目标中。
  3. 在相机模式下,使用汞灯打开光线并照亮舌头表面。
  4. 通过调整 Z 轴,从纤维形乳香饼中搜索自荧光信号,以找到近似焦距平面。然后,使用 X 和 Y 调整旋钮,定位味蕾。
  5. 切换到多光子模式。将图像采集条件设置为:激发波长:920 nm:排放过滤器集:447/60 nm、525/50 nm 和 607/70 nm:双向刺耳扫描模式,帧尺寸:512 x 512。
  6. 调整 X 和 Y 位置,将味蕾放在图像窗口的中心。
  7. 在味蕾约三分之二高处搜索味蕾周围的血管。从协议步骤 3.2 中,通过 TRITC-dextran (500 kDa) 注射可视化血液循环。如果血流堵塞,稍微松开固定螺丝,让血液流动。
  8. 调整 Z 轴,找到含有足够数量味觉细胞的味蕾 Z 平面。
  9. 进行钙成像与 2-6 Hz 为 80s.通过在成像开始后打开流体系统的储液库,提供 20s 的味觉解决方案。经过20s的味觉刺激,将水库切换回人工唾液。
  10. 完成连续成像后,请提前约 3-4 分钟等待下一次成像会话。保持人工唾液流向鼠舌,以洗去上一个成像会话中的口感还原。根据实验的设计,根据需要重复会话。
  11. 当体内钙成像完成时,根据ICACUC程序对小鼠实施安乐死。麻醉下的老鼠在CO2室被牺牲。
    注意:使用脚趾捏反射检查麻醉的深度。在成像过程中,应始终如一地提供来自水库的人工唾液。如果气泡出现在 μTongue 的成像窗口,则使用强大的液体压力将气泡通过 μTongue 的输入或输出来消除气泡。

5. 图像分析 (图3

  1. 图像转换
    1. 使用斐济14 或类似的图像分析软件打开原始图像文件。
    2. 将图像文件转换为 RGB 堆栈文件以使用 NPL 芽分析器 代码。
      1. 图像>颜色>拆分通道
      2. 图像>颜色>合并通道 ,并从步骤 5.2.1 中选择图像。
      3. 图像>颜色>堆栈到 RGB
  2. 图像注册
    注:使用自定义编写的代码进行数据分析。请参阅 https://github.com/neurophotonic/Tastebud-analyzer。
    1. 运行名为 Taste_GUI.m的代码:一个名为 Npl 芽分析仪的 Gui 窗口将弹出。单击右上角 的新分析 按钮,然后从第 5.1 步加载转换后的图像。将帧速率设置在加载图像上方。
    2. 在加载的图像上绘制感兴趣的区域 (ROI) 进行注册。双击所选投资回报率,将开始自动计算注册。
  3. 获得相对荧光强度变化(+F/F
    1. 返回 NPL Bud 分析器 窗口,自动显示第 5.2 步的注册图像。如果用户已经有一个 注册 文件,请单击负载数据按钮并选择 _reg.tif 文件。
    2. 单击 圆环 POLYGON 按钮,将味觉细胞的投资回报率放置在味蕾图像上。
    3. 这表示在味蕾图像下自动呈现所选味觉细胞的原始荧光强度和钙微量(+F/F)。
    4. 单击 "保存跟踪 "以呈现 GUI 右侧的钙痕迹(+F/F),而投资回报率则显示在味蕾图像上。重复步骤 5.3.2-5.3.4,直到投资回报率选择完成。
      注:如果错误选择投资回报率,请单击 "删除跟踪 "按钮,以消除最后选定的 ROI 和钙痕迹。
    5. 投资回报率选择完成后,在右下角写上文件名称,然后单击 "完成 "按钮,将+F/F 钙痕迹导出为.xls格式,以及以.bmp格式使用 ROI 的 tase bud 图像。
  4. 钙痕分析
    1. 分析从第 5.3 步获得的钙痕迹。考虑当荧光强度在塔斯特交付4后基线的两个标准偏差增加时,味觉细胞对 tastant 有反应,p值小于 0.01,使用配对或未修饰的t测试10。
    2. 将味觉细胞视为响应细胞,如果它对某一味菌的反应超过三个试验(+60%)15的两倍。
    3. 通过平均从第 5.4.1 步获得的单个钙痕迹来获取具有代表性的钙痕迹。

结果

皮尔特-GCAMP6f-tdTomato鼠标被用来获得味蕾图像。老鼠舌头的表面覆盖着自荧光纤维素乳草。味蕾稀疏地铺在舌头表面(图4A)。味蕾及其结构的图像是使用三种不同的滤光片探测器获得的。使用 607/70 nm 滤光片集,从味觉细胞获得 tdTomato 信号进行比例分析(图 4B)。使用 525/50 nm 过滤器集,从味蕾周围的味觉细胞和血管获得 GCaMP 信号(图...

讨论

这里描述的是一个详细的协议,将μTongue应用于对 体内味觉细胞功能活动的调查。在此协议中,使用基因编码钙指标对味觉细胞进行功能成像。除了使用转基因小鼠外,钙染料(或电压感应染料)的电泳加载到味觉细胞上也是另一种选择。

所有低于折射指数1.336的味觉溶液都用于此实验。虽然 μTongue 提供了稳定的流体输送和比例分析,可改善成像伪影,但研究人员将?...

披露声明

作者宣布竞争的经济利益:J.Han和M.Choi是本文中描述的专利的 μTongue 技术的发明者,μTongue 系统通过韩国科技公司进行商业化。

致谢

这项工作得到了基础科学研究所(IBS-R015-D1)的支持,该研究所是韩国国家研究基金会(NRF)的赠款,由韩国政府资助(MSIT)( No. 2019M3A9E2061789),由韩国政府资助的韩国国家研究基金会(NRF)赠款(第2019M3E5D2A01058329号)。我们感谢金恩苏和尤金·李的技术援助。

材料

NameCompanyCatalog NumberComments
acesulfame KSigma Aldrich04054-25GArtificial saliva / tastant
calcium chloride solutionSigma Aldrich21115-100MLArtificial saliva / tastant
citric acidSigma AldrichC0759-100GArtificial saliva / tastant
cycloheximideSigma Aldrich01810-5GArtificial saliva / tastant
denatoniumSigma AldrichD5765-5GArtificial saliva / tastant
Dental glueDenkistP0000CJT-A2Animal preparation
Image JNIHImageJData analysis
IMPSigma Aldrich57510-5GArtificial saliva / tastant
Instant adhesiveLoctiteLoctite 4161, HenkelAnimal preparation
K2HPO4Sigma AldrichP3786-100GArtificial saliva / tastant
KClSigma AldrichP9541-500GArtificial saliva / tastant
KetamineYuhanKetamine 50Animal preparation
KH2PO4Sigma AldrichP0662-25GArtificial saliva / tastant
KHCO3Sigma Aldrich237205-500GArtificial saliva / tastant
MATLABMathworkMATLABData analysis
MgCl2Sigma AldrichM8266-100GArtificial saliva / tastant
MPGSigma Aldrich49601-100GArtificial saliva / tastant
Mutiphoton microscopeThorlab Bergamo IIMicroscope
NaClSigma AldrichS3014-500GArtificial saliva / tastant
NaHCO3Sigma Aldrich792519-500GArtificial saliva / tastant
ObjectiveNikonN16XLWD-PFMicroscope
OctaflowALA Scientific InstrumentsOCTAFLOW IIFluidic control
PCLGLg15N54Fluidic control
PH meterThermoscientificORION STAR AZ11Artificial saliva / tastant
Phosphate-buffered salineSigma Aldrich806562Artificial saliva / tastant
quinineSigma AldrichQ1125-5GArtificial saliva / tastant
Syringe pumpHavard ApparatusPHD ULTRA 4400Fluidic control
TRITC-dextranSigma Aldrich52194-1GAnimal preparation
Ultrafast fiber laserTopticaFFultra920 01042Microscope
XylazineBayer KoreaRompunAnimal preparation

参考文献

  1. Mao, T., O'Connor, D. H., Scheuss, V., Nakai, J., Svoboda, K. Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS One. 3 (3), 1-10 (2008).
  2. Shih, A. Y., et al. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. Journal of Cerebral Blood Flow & Metabolism. 32 (7), 1277-1309 (2012).
  3. Choi, M., Kwok, S. J. J., Yun, S. H. In vivo fluorescence microscopy: Lessons from observing cell behavior in their native environment. Physiology. 30 (1), 40-49 (2015).
  4. Caicedo, A., Samir Jafri, M., Roper, S. D. In situ Ca2+ imaging reveals neurotransmitter receptors for glutamate in taste receptor cells. Journal of Neuroscience. 20 (21), 7978-7985 (2000).
  5. Tomchik, S. M., Berg, S., Kim, J. W., Chaudhari, N., Roper, S. D. Breadth of tuning and taste coding in mammalian taste buds. Journal of Neuroscience. 27 (40), 10840-10848 (2007).
  6. Dando, R., Roper, S. D. Cell-to-cell communication in intact taste buds through ATP signalling from pannexin 1 gap junction hemichannels. The Journal of Physiology. 587 (24), 5899-5906 (2009).
  7. Chandrashekar, J., et al. The cells and peripheral representation of sodium taste in mice. Nature. 464 (7286), 297-301 (2010).
  8. Oka, Y., Butnaru, M., von Buchholtz, L., Ryba, N. J. P., Zuker, C. S. High salt recruits aversive taste pathways. Nature. 494 (7438), 472-475 (2013).
  9. Choi, M., Lee, W. M., Yun, S. H. Intravital microscopic interrogation of peripheral taste sensation. Scientific Reports. 5 (8661), 1-6 (2015).
  10. Han, J., Choi, M. Comprehensive functional screening of taste sensation in vivo. bioRxiv. 16419 (371682), 1-22 (2018).
  11. Thestrup, T., et al. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nature Methods. 11 (2), 175-182 (2014).
  12. Danilova, V. Glossopharyngeal nerves to taste stimuli in C57BL / 6J mice. BME Neuroscience. 15, 1-15 (2003).
  13. Wu, A., Dvoryanchikov, G., Pereira, E., Chaudhari, N., Roper, S. D. Breadth of tuning in taste afferent neurons varies with stimulus strength. Nature Communications. 6 (8171), 1-11 (2015).
  14. Schindelin, J., et al. Fiji: An open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  15. Tan, H. E., et al. The gut-brain axis mediates sugar preference. Nature. 580 (7804), 511-516 (2020).
  16. Roebber, J. K., Roper, S. D., Chaudhari, N. The role of the anion in salt (NaCl) detection by mouse taste buds. The Journal of Neuroscience. 39 (32), 6224-6232 (2019).
  17. Kusuhara, Y., et al. Taste responses in mice lacking taste receptor subunit T1R1. Journal of Physiology. 591 (7), 1967-1985 (2013).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

170

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。