登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里,我们演示了一种方法,将液剪应力应用于悬浮中的癌细胞,以模拟血液动力学应激对循环肿瘤细胞的影响。

摘要

在转移过程中,来自固体组织的癌细胞,包括绰号,获得淋巴和血源循环,在那里他们暴露在机械应激由于血液同源流动。其中一个压力是循环肿瘤细胞(CTCs)的经验是液体剪切应力(FSS)。虽然癌细胞可能由于间歇性流动而在肿瘤内经历低水平的FSS,但CTC在没有细胞外基质附着的情况下暴露在更大的FSS水平上。从生理学上讲,FSS的震级范围超过3-4级,淋巴(<1分/厘米2)中含量较低,当细胞穿过心脏和心脏瓣膜时,最高水平短暂存在(>500dynes/cm2)。有几个 体外 模型设计为在不同的时间范围内模拟不同范围的生理剪切应力。本文描述了一个模型,利用简单的注射器和针头系统来研究高水平FSS的短暂(毫秒)脉冲对癌细胞生物学的影响。

引言

转移,或癌症的扩散超过最初的肿瘤部位,是导致癌症死亡率的主要因素1。在转移过程中,癌细胞利用循环系统作为高速公路传播到全身2、3的遥远部位。在前往这些部位的途中,循环肿瘤细胞(CTCs)存在于动态流体微环境内,不像其原始原发肿瘤3、4、5。有人提出,这种流体微环境是转移4的众多障碍之一。转移效率低下的概念大体一致,即大多数进入循环的CTC要么灭亡,要么不形成生产性转移殖民地6,7,8。然而,为什么从单个反恐委员会的角度来看,转移效率低下,这一点不太确定,而且仍然是一个活跃的调查领域。CTC与细胞外基质分离,剥夺了原发性肿瘤中可能存在的可溶性生长和生存因子,并且以与原发性肿瘤4大不相同的方式暴露在免疫系统和血液动力中。这些因素都可能导致CTC的存活率低,但其相对贡献尚不清楚。本文讨论了血液动力如何影响CTC的问题。

研究血液动力对CTC的影响是相当具有挑战性的。目前,没有工程体外系统可以复制整个空间动力学(心到毛细血管)和人类血管系统的流变特性。此外,CTC如何体验循环系统还不完全清楚。实验证据表明,大多数癌细胞不会像血细胞那样持续循环。相反,由于它们的尺寸相对较大(直径为10-20μm),大多数CTC被卡在毛细血管床(直径为6-8μm)的可变时间长度(s至天),在那里他们可能会死亡,奢侈,或被转移到下一个毛细血管床8,9,10,11。然而,有一些证据表明,CTC的大小可能更异质的体内,较小的CTC是可检测到的12。因此,根据距离和血流速度,CTC只能在这些诱捕期之间自由循环几秒钟,尽管缺乏对这种行为的定量描述。

此外,根据CTC进入循环的位置,它们可能通过肺部和其他外周部位的多个毛细发床,在到达最终目的地之前通过左右心脏。一路上,CTC 暴露于各种血液动力学应力,包括液切变应力 (FSS)、在微循环中诱捕过程中的压缩力,以及在可能表现出类似白细胞的沿着血管壁滚动的情况下的牵引力因此,对流通进行建模的能力和对要建模的CTC行为的理解都是有限的。由于这种不确定性, 体外 模型系统的任何发现都应在实验脊椎动物体内以及最终在癌症患者中得到验证。

有了上述警告,本文演示了一个相对简单的模型,将FSS应用于悬浮细胞,以探讨FSS对CTC的影响首次描述在2012年15。FSS 是血流摩擦血管壁的结果,在较大血管的层压流条件下产生抛物线速度梯度。细胞在血管壁附近经历更高水平的FSS,在血管中心附近经历较低的FSS水平。流体粘度、流速和流经管道的尺寸会影响 FSS,如哈根-波塞耶方程所述。这适用于血流作为牛顿流体的行为,但不适用于微循环。生理FSS的范围超过几个数量级,淋巴(<1 dyn/cm2)中最低,心脏瓣膜和动脉粥样硬化斑块周围区域最高(>500 dyn/cm2)5。动脉中的平均壁切应力为10-70 dyn/cm2和静脉1-6 dyn/cm2,静脉16,17。

在心脏,细胞可能暴露在阀门传单周围的湍流,其中非常高水平,但非常短的FSS可能会经历18,19。虽然生物处理领域长期以来一直研究FSS对悬浮哺乳动物细胞的影响,但这种信息对于理解FSS对CTC的影响可能价值有限,因为它通常侧重于长期应用的低得多的FSS水平。如下所述,使用注射器和针头,可以将相对较高的(数万至数千丁/厘米2)FSS用于相对较短的(毫秒)的细胞悬架。自最初描述这个模型15以来,其他人已经利用它来研究FSS对癌细胞21,22,23的影响。FSS 的多个"脉冲"可在短时间内应用于细胞悬浮,以促进下游实验分析。例如,该模型可用于测量细胞通过 FSS 抵抗机械破坏的能力,测量细胞的可行性作为应用脉冲数量的函数。或者,可以通过收集细胞进行各种下游分析来探索FSS暴露对癌细胞生物学的影响。重要的是,部分单元格悬架保留为静态控制,以比较 FSS 与可能与单元格分离和悬架中保持的时间相关的影响。

研究方案

1. 细胞制备

  1. 当 70-90% 汇流时,通过遵循所用细胞系的建议指南从组织培养皿中释放细胞。
    1. 例如,为 PC-3 细胞吸气生长介质,用 5 mL 的无钙和无镁磷酸盐缓冲盐水 (PBS) 清洗 10 厘米的细胞盘。
    2. 在使用制造商协议添加 1 mL 的 0.25% 试用素之前,先吸气 PBS。
    3. 在倒置显微镜下观察细胞分离后,加入含有10%胎儿牛血清的5 mL DMEM:F12介质,以抑制试金石。
  2. 将细胞悬架放入圆锥管中。
  3. 确定细胞浓度和总细胞数。
  4. 通过离心(300×g 3 分钟),吸气超高分子,并在无血清组织培养介质中将细胞重新吸回 5 × 105细胞/mL。
    注:至关重要的是,检测介质包含至少1.17 mM Ca+作为细胞外Ca+已被证明需要细胞抵抗FSS15。

2. 流体剪应激暴露

  1. 在将细胞暴露在 FSS 之前,在 7 mL 线路上切割一个圆底 14 mL 聚苯乙烯管。将电池悬架混合,将悬架的 5 mL 放入切割管中,并收集静态控制样品。
    注:静态样本所需的体积取决于使用的可行性测定(参见第 3 步)。
  2. 将电池悬架拉入 5 mL 注射器中,并连接 30 G 1/2"针头。解开针头,将注射器放在注射器泵上,固定注射器,并设置流速,以达到所需的 FSS 水平。
    注: 表1 显示不同针头的最大壁切应力和流速,以及根据细胞大小(10、15 和 20 μm)的 FSS 的最小水平。使用前检查针头,以确保针头不弯曲:如果不确定,用新针头代替针头。针头完整性可对 FSS 应用水平产生重大影响。
  3. 运行注射器泵,并以大约 45° 的角度在切管中收集剪切样品,以减少发泡。根据可行性检测类型或下游检测需求收集样本。
    1. 小心地从注射器泵中取出注射器和针头,并用钳子从注射器中取出针头,注意不要触摸针头。
      注:非斜针可与斜针互换使用,作为额外的安全措施。
  4. 将剪切的悬架拉回注射器中,用钳子小心地重新连接针头,然后放回注射器泵中。
  5. 重复步骤 2.3 和 2.4,直到细胞悬浮暴露在 FSS 所需的脉冲数量中。
    注:为了评估细胞抵抗FSS暴露的机械破坏的能力,细胞悬浮通常受FSS的10个脉冲的影响。然而,已经证明,细胞开始进行生物适应,以响应FSS后,2脉冲24。

3. 可行性测量

注:可使用酶检测(葡萄糖、雷萨祖林和WST-1)评估可行性,计算完整的细胞、流动细胞学或克隆性测定。

  1. 对于所有生存能力指标,在将细胞暴露在 FSS 之前收集样本。
    1. 对于酶检测,请重复 100 μL 的 aliquot,并将其放入 96 井板中。
    2. 对于流细胞学,取一个 500 μL 的阿利奎特,并将其放入 1.5 mL 管中。
    3. 对于克隆性测定,收集 100 μL 的阿利库特。
  2. 酶检测
    1. 在 1、2、4、6、8 和 10 个 FSS 暴露脉冲后收集 100 个 μL 样本,并将其放置在 96 井板中。
    2. 添加所需的基板,并遵循使用检测的协议:
      1. 对于雷萨祖林,在每口井中加入 20 微升 0.15 毫克/mL 溶液。将 20 μL 的 0.15 毫克/mL 雷萨祖林溶液添加到仅含有 100 μL 介质的油井中。在 37 °C 组织培养孵化器中孵育 2 小时。使用能够读取荧光(579 激发/584 发射)的板读器测量吸气度。
      2. 对于荧光酶表达细胞,在 5 mL 介质中加入 100 微升 15 毫克/mL D-luciferin。将 100 μL 的溶液添加到每个含有该溶液的井中。等待 5 分钟,然后使用与发光兼容的读卡器读取板。
      3. 对于 WST-1,在每个油井中加入 10 μL 的 WST-1,包括仅含介质的井。孵育4小时,然后使用板读器读取420至480纳米之间的吸血。
    3. 将每个 FSS 暴露样本的平均信号与平均静态控制样本进行比较,以获得可行细胞的百分比。
  3. 流细胞学24
    1. 收集 500 个 μL 样品,并在 1、2、5 和 10 个 FSS 脉冲后将其放入 1.5 mL 离心机管中。
    2. 离心机样品(500× 3分钟),并丢弃超强。
    3. 用1兆L的无钙和无镁PBS重新消耗颗粒,并离心取样(3分钟300× )。
    4. 暂停颗粒与500微升荧光激活细胞排序(FACS)缓冲(PBS与0.5%牛血清白蛋白和0.1%钠阿齐德)与计数珠和膜防渗或可行性染料,如碘化物(1.75微克/兆升)。
    5. 通过比较可正常化的可行细胞与计数珠子的比例,确定切片样品与静态样本的存活率。
  4. 克隆性测定
    1. 取 100 μL 的静态样品,并添加 900 μL 的生长介质,进行 1:10 稀释。
    2. 取 1:10 稀释样品的 100 μL,并添加 900 μL 的生长介质,进行最终的 1:100 稀释。
    3. 将 1:100 稀释样品中的 100 μL 加入包含 2 mL 生长介质的 6 井盘的 3 口井中的每口。
    4. 重复步骤 3.4.1-3.4.3 与样本已经受到 10 脉冲的 FSS.
    5. 让细胞生长7-10天而不改变介质,并检查菌落的形成。一旦形成≥50个细胞的菌落,吸气生长介质,用1mL的PBS冲洗每口井,吸气PBS,并使用1mL的冰冷70%乙醇(EtOH)固定5分钟。重要的是,同时修复剪切和静态样品
    6. 修复样品后,吸气 EtOH,并加入 1 至 2 mL 的水晶紫罗兰溶液(90% H2O 中的 0.1% 晶体紫罗兰,10% EtOH)5 分钟。
    7. 用多余的水冲洗,让盘子干涸
    8. 计算静态和剪切样本的菌落(≥50个细胞簇)。比较切切样本中的平均菌落数量与静态样本中菌落平均数量的比例,以确定生存能力。

结果

先前已证明,对FSS诱发的机械破坏的耐药性升高是多种癌细胞系的保存表型,而与未转化的上皮细胞比较器15、24相比从肿瘤中新分离出来的癌细胞是一种保存的表型。在这里,从各种组织起源(表2)的其他癌细胞系测试,以证明这些细胞的大多数显示生存能力≥20%后,10脉冲的FSS在250μL/s。一个例外是MiaPaCa2细胞,它对FSS的机械破坏相对?...

讨论

本文演示了FSS在悬架中使用注射器和针头对癌细胞的应用。使用这个模型,癌细胞已经证明对高水平FSS的短暂脉冲比非转化上皮细胞15,22,24耐药。此外,使用此模型接触FSS可导致细胞僵硬度迅速增加,RhoA激活,皮质F-actin和肌素II基收缩性增加24,27。快速机械适应(CTC的能力,?...

披露声明

MDH 是 SynderBio 公司的联合创始人、总裁和股东,DLM 是 SynderBio 公司的顾问。

致谢

这里展示的模型的发展得到了DOD赠款W81XWH-12-1-0163、NIH赠款R21 CA179981和R21CA196202以及佐藤转移研究基金的支持。

材料

NameCompanyCatalog NumberComments
0.25% TrypsinGibco25200-056
14 mL round bottom tubesFalcon - Corning352059
30 G 1/2" NeedleBD305106
5 mL syringeBD309646
96-well black bottom plateCostar - Corning3915
Bioluminescence detectorAMIAMI HTX
BSA, Fraction VSigma10735086001
Cell Titer BluePromegaG8081
crystal violetSigmaC0775
D-luciferinGoldBioD-LUCK
DMEMGibco11965-092
FBSAtlanta BiologicalsS11150
PBSGibco10010023
Plate ReaderBioTekSynergy HT
Sodium Azide (NaN3)SigmaS2002
Syringe PumpHarvard Apparatus70-3005

参考文献

  1. Dillekås, H., Rogers, M. S., Straume, O. Are 90% of deaths from cancer caused by metastases. Cancer medicine. 8 (12), 5574-5576 (2019).
  2. Hanahan, D., Weinberg, R. A. Hallmarks of cancer: the next generation. Cell. 144 (5), 646-674 (2011).
  3. Strilic, B., Offermanns, S. Intravascular survival and extravasation of tumor cells. Cancer Cell. 32 (3), 282-293 (2017).
  4. Labelle, M., Hynes, R. O. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discovery. 2 (12), 1091-1099 (2012).
  5. Krog, B. L., Henry, M. D. Biomechanics of the circulating tumor cell microenvironment. Advances in Experimental Medicine and Biology. 1092, 209-233 (2018).
  6. Weiss, L. Metastatic inefficiency. Advances in Cancer Research. 54, 159-211 (1990).
  7. Zeidman, I., Mc, C. M., Coman, D. R. Factors affecting the number of tumor metastases; experiments with a transplantable mouse tumor. Cancer Research. 10 (6), 357-359 (1950).
  8. Fidler, I. J. Metastasis: quantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2'-deoxyuridine. Journal of the National Cancer Institute. 45 (4), 773-782 (1970).
  9. Cameron, M. D., et al. Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Research. 60 (9), 2541-2546 (2000).
  10. Luzzi, K. J., et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. American Journal of Pathology. 153 (3), 865-873 (1998).
  11. Kienast, Y., et al. Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine. 16 (1), 116-122 (2010).
  12. Takagi, H., et al. Analysis of the circulating tumor cell capture ability of a slit filter-based method in comparison to a selection-free method in multiple cancer types. International journal of molecular sciences. 21 (23), 9031 (2020).
  13. Scott, J., Kuhn, P., Anderson, A. R. Unifying metastasis--integrating intravasation, circulation and end-organ colonization. Nature Reviews Cancer. 12 (7), 445-446 (2012).
  14. Wirtz, D., Konstantopoulos, K., Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nature Reviews Cancer. 11 (7), 512-522 (2011).
  15. Barnes, J. M., Nauseef, J. T., Henry, M. D. Resistance to fluid shear stress is a conserved biophysical property of malignant cells. PLoS One. 7 (12), 50973 (2012).
  16. Malek, A. M., Alper, S. L., Izumo, S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 282 (21), 2035-2042 (1999).
  17. Brass, L. F., Diamond, S. L. Transport physics and biorheology in the setting of hemostasis and thrombosis. Journal of Thrombosis and Haemostasis. 14 (5), 906-917 (2016).
  18. Stein, P. D., Sabbah, H. N. Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves. Circulation Research. 39 (1), 58-65 (1976).
  19. Strony, J., Beaudoin, A., Brands, D., Adelman, B. Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis. The American Journal of Physiology. 265 (5), 1787-1796 (1993).
  20. Chalmers, J. J. Mixing, aeration and cell damage, 30+ years later: what we learned, how it affected the cell culture industry and what we would like to know more about. Current Opinion in Chemical Engineering. 10, 94-102 (2015).
  21. Vennin, C., et al. Trsient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine. 9 (384), 126 (2017).
  22. Mitchell, M. J., et al. Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress. American Journal of Physiology: Cell Physiology. 309 (11), 736-746 (2015).
  23. Ortiz-Otero, N., et al. Cancer associated fibroblasts confer shear resistance to circulating tumor cells during prostate cancer metastatic progression. Oncotarget. 11 (12), 1037-1050 (2020).
  24. Moose, D. L., et al. Cancer cells resist mechanical destruction in circulation via RhoA/actomyosin-dependent mechano-adaptation. Cell Reports. 30 (11), 3864-3874 (2020).
  25. Miller, B. E., Miller, F. R., Wilburn, D. J., Heppner, G. H. Analysis of tumour cell composition in tumours composed of paired mixtures of mammary tumour cell lines. British Journal of Cancer. 56 (5), 561-569 (1987).
  26. Aslakson, C. J., Miller, F. R. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Research. 52 (6), 1399 (1992).
  27. Chivukula, V. K., Krog, B. L., Nauseef, J. T., Henry, M. D., Vigmostad, S. C. Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study. Cell Health Cytoskeleton. 7, 25-35 (2015).
  28. Gensbittel, V., et al. Mechanical adaptability of tumor cells in metastasis. Developmental Cell. 56 (2), 164-179 (2021).
  29. O'Leary, B. R., et al. Pharmacological ascorbate inhibits pancreatic cancer metastases via a peroxide-mediated mechanism. Scientific Reports. 10 (1), 17649 (2020).
  30. Williams, A. R., Hughes, D. E., Nyborg, W. L. Hemolysis near a transversely oscillating wire. Science. 169 (3948), 871-873 (1970).
  31. Rooney, J. A. Hemolysis near an ultrasonically pulsating gas bubble. Science. 169 (3948), 869-871 (1970).
  32. Connolly, S., McGourty, K., Newport, D. The in vitro inertial positions and viability of cells in suspension under different in vivo flow conditions. Scientific Reports. 10 (1), 1711 (2020).
  33. Brooks, D. E. The biorheology of tumor cells. Biorheology. 21 (1-2), 85-91 (1984).
  34. Triantafillu, U. L., Park, S., Klaassen, N. L., Raddatz, A. D., Kim, Y. Fluid shear stress induces cancer stem cell-like phenotype in MCF7 breast cancer cell line without inducing epithelial to mesenchymal transition. Internation Journal of Oncology. 50 (3), 993-1001 (2017).
  35. Fan, R., et al. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells. Scientific Reports. 6, 27073 (2016).
  36. Fu, A., et al. High expression of MnSOD promotes survival of circulating breast cancer cells and increases their resistance to doxorubicin. Oncotarget. 7 (31), 50239-50257 (2016).
  37. Li, S., et al. Shear stress promotes anoikis resistance of cancer cells via caveolin-1-dependent extrinsic and intrinsic apoptotic pathways. Journal of Cellular Physiology. 234 (4), 3730-3743 (2019).
  38. Xin, Y., et al. Mechanics and actomyosin-dependent survival/chemoresistance of suspended tumor cells in shear flow. Biophysical Journal. 116 (10), 1803-1814 (2019).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

170

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。