登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

尽管多重免疫组织化学和多光谱成像取得了进展,但同时表征子宫内膜中主要免疫细胞的密度和聚集仍然是一个挑战。本文描述了一种详细的多重染色方案和成像,用于同时定位子宫内膜中四种免疫细胞类型。

摘要

免疫组化是生物学研究和临床诊断中组织抗原鉴定和可视化的最常用方法。它可用于表征各种生物过程或病理学,例如伤口愈合,免疫反应,组织排斥和组织 - 生物材料相互作用。然而,使用常规免疫组织化学(IHC)染色在单个组织切片中对多种抗原(特别是对于免疫细胞)的可视化和定量仍然不令人满意。因此,近年来引入了多重技术来鉴定单个组织样品或不同组织样品集合中的多种生物标志物。

这些技术在区分可育妇女和植入期间复发性流产妇女之间子宫内膜内免疫细胞间相互作用的变化方面特别有用。本文描述了多重荧光IHC染色的详细方案,以研究胚胎植入期间精确定时子宫内膜标本中四种主要免疫细胞类型的密度和聚类。该方法包括样品制备,使用免疫细胞亚型标记物进行多重优化,以及扫描载玻片,然后进行数据分析,并特别参考检测子宫内膜免疫细胞。

使用这种方法,可以在单个组织切片中同时分析子宫内膜中四种主要免疫细胞类型的密度和聚类。此外,本文还将讨论关键因素和故障排除,以克服所应用的荧光探针之间可能存在的荧光团干扰。重要的是,这种多重染色技术的结果可以帮助深入了解胚胎植入过程中的免疫相互作用和调节。

引言

复发性流产(RM)可定义为妊娠24周前两次或两次以上妊娠的损失1。这种频繁的生殖状况影响了全球高达1%的夫妇2,3。病理生理学是多因素的,可分为胚胎学驱动的原因(主要是由于胚胎核型异常)和影响子宫内膜和/或胎盘发育的母体驱动的原因。这种表现可由父母遗传异常,子宫异常,血栓前疾病,内分泌因素和免疫性疾病引起4。

近年来,免疫效应细胞功能障碍与早孕丢失的发病机制有关5。这激发了许多研究,以阐明月经周期,植入和早孕期间子宫内膜中免疫细胞的特定群体,并在妊娠早期具有特定作用。在这些免疫细胞中,子宫自然杀伤(uNK)细胞在胚胎植入和怀孕期间起着关键作用,特别是在滋养细胞侵袭和血管生成过程中6。研究表明,RM7,8的女性子宫内膜的uNK细胞密度增加,尽管这一发现与流产风险增加无关9。然而,这刺激了研究评估其他免疫细胞类型(如巨噬细胞,子宫树突状细胞)在RM10,11的女性子宫内膜中的密度。然而,仍然不确定RM女性植入围膜内膜的免疫细胞密度是否有显着改变。

对不确定性的一种可能的解释是,由于植入窗口期间子宫内膜的快速变化,评估子宫内膜免疫细胞密度可能很困难。在24小时的时间范围内,子宫内膜的显着变化改变了免疫细胞密度和细胞因子分泌,在这些结果中引入了变异源12。此外,大多数报告主要依赖于使用单细胞染色(例如,传统的IHC方法),无法检查同一组织切片上的多个标记。虽然流式细胞术可用于检测单个样品中的多个细胞群,但所需的大量细胞和耗时的优化阻碍了该方法的普及和效率。因此,多重IHC染色的最新进展可以通过在同一张载玻片上免疫染色多个标记物来评估多个参数,包括细胞谱系和单个免疫亚群的组织学定位,从而解决这个问题。此外,该技术可以在组织可用性有限的情况下最大化所获得的信息。最终,这项技术可以帮助阐明肥沃女性和RM女性之间子宫内膜免疫细胞相互作用的差异。

从威尔士亲王医院招募了两组妇女,包括生育控制妇女(FC)和不明原因复发性流产妇女(RM)。受精控制被定义为至少有一次活产而没有任何自发性流产史的女性,RM女性被定义为在妊娠20周前有≥2次连续流产史的女性。两组受试者符合以下纳入标准:(a)年龄在20至42岁之间,(b)非吸烟者,(c)月经周期正常(25-35天)和正常的子宫结构,(d)子宫内膜活检前至少3个月不使用任何激素方案,(e)通过子宫内膜输卵管造影没有输卵管积水。此外,所有招募的受试者核型正常,三维超声宫腔造影正常,第2天卵泡刺激素<10 IU / L,黄体中期黄体酮>30 nmol /L,甲状腺功能正常,狼疮抗凝剂和抗心磷脂IgG和IgM抗体检测呈阴性。

为了更好地了解RM的免疫学基础,最理想的方法是同时定量和定位植入时子宫内膜中存在的主要免疫细胞类型。本文描述了从样品制备,免疫细胞亚型标记物的多重优化以及载玻片扫描的整个方案,然后进行数据分析,并特别参考检测子宫内膜免疫细胞。此外,本文还描述了如何同时确定子宫内膜中免疫细胞类型的密度和聚类。

研究方案

该研究获香港中文大学-新界东区临床研究伦理委员会联合批准。在收集子宫内膜活检之前,从参与者那里获得知情同意。有关控制和 RM 组的包含标准,请参阅简介部分。

1. 样品制备

  1. 确保本研究中的所有女性从月经周期的第9天开始每天接受尿液试纸测试,以确定黄体生成素(LH)激增以检测排卵,并在LH激增(LH + 7)后的第 7天精确地进行子宫内膜活检。
  2. 使用Piperle采样器或Pipet Curet从有不明原因RM的女性那里获得0.5 cm 2的子宫内膜活检片段。
    注意:固定剂的体积应为组织的5-10倍。
  3. 将组织放入墨盒中,在组织处理机中脱水,然后将其嵌入熔融石蜡中。将组织包埋在58-60°C的石蜡中。
  4. 让石蜡块在室温下冷却过夜。使用切片机将石蜡块修剪至3μm的厚度。
    注意:使用蒸馏水有助于在整个多重染色过程中进行适当的组织安装和粘附。
  5. 将石蜡丝带置于40-45°C的水浴中30秒。
  6. 将切片安装到聚-L-赖氨酸(0.1%w / v)涂层的显微镜载玻片上。将载玻片与组织朝上放置,并在37°C下干燥过夜。将载玻片存放在远离极端温度的载玻片盒中,直至进一步使用。

2. 使用常规IHC确定多重IHC的理想抗体浓度。

注意:这对于鉴定子宫内膜样品中每种免疫标志物的表达水平和模式,并确定每种标志物的染色序列及其相关的酪胺信号扩增(TSA)荧光团配对非常重要。

  1. 使用手动常规IHC13测试抗体对多重IHC的适用性。
  2. 使用子宫内膜组织进行单抗体检测。
  3. 包括阳性对照(例如脾脏)和阴性对照(同种型对照),以优化每种抗体的染色条件。
  4. 使用抗体数据表推荐的稀释液进行染色。
  5. 使用高于和低于步骤2.3中使用的推荐稀释度的浓度进行额外的染色。
    注意:临床病理学家应盲目评估染色的载玻片,以确认抗体探测的定位和细胞完整性。

3. 多重染色方法

  1. 玻片制备和固定
    1. 将载玻片(从步骤1.6开始)平放,将组织朝上放在烤箱中,并在60°C下烘烤至少1小时。
    2. 从烤箱中取出载玻片,让它们在室温下冷却至少20分钟,然后再将它们放在垂直的载玻片架中。
    3. 脱蜡并重新水合福尔马林固定的石蜡包埋载玻片,10分钟分配给以下每个步骤:二甲苯(2x),100%乙醇(2x),95%乙醇(1x),70%乙醇(2x)和蒸馏水(2x)。
    4. 将载玻片架放入塑料载玻片盒中,并将其浸没在Tris缓冲盐水(TBS,pH 7.6)中。
      注意:从此补液步骤开始,载玻片必须保持湿润,直到安装到最后一步。
    5. 通过将载玻片浸没在充满甲醇(1:9)中甲醛混合物的塑料载玻片盒中,在黑暗中浸泡30分钟来固定样品。
    6. 在去离子水中洗涤载玻片两次2分钟,然后进行抗原检索。
  2. 表位检索
    1. 将载玻片架放在耐热盒中,并用柠檬酸缓冲液(pH 6.0)填充以覆盖载玻片。
    2. 将盒子放入微波炉中,以100%功率加热载玻片50秒,然后以20%功率加热20分钟以保持相同的温度。
    3. 让载玻片在室温下冷却约15分钟。
    4. 在水中冲洗载玻片2分钟,然后用TBS-吐温20(TBST)冲洗2分钟。
      注:TBST由25 mM Tris-HCl (pH 7.5)、150 mM NaCl 和 0.05% 吐温 20 (v/v) 组成。
  3. 阻塞
    1. 通过将载玻片浸入含有过氧化物酶阻断溶液(见 材料表)的罐子上10分钟,阻断组织中的内源性过氧化物酶活性。
    2. 用TBST清洗载玻片5分钟。
    3. 使用疏水屏障笔在载玻片上的组织部分周围标记边界。
    4. 用封闭缓冲液(见 材料表)或牛血清白蛋白(5%,w / v)覆盖组织切片,并将载玻片在加湿室中孵育15分钟。
  4. 抗体和信号应用
    1. 除去封闭试剂。
    2. 与目标一抗(例如,CD3,1:100稀释在抗体稀释剂中,见 表1)在室温下在加湿室中孵育30分钟。
    3. 去除一抗。每次用TBST清洗3次5分钟。
    4. 用聚合物辣根过氧化物酶(HRP)标记的二抗(表1)在室温下在加湿室中孵育15分钟。每次用TBST清洗3次5分钟。
    5. 应用蛋白石荧光团 TSA 工作溶液(在扩增稀释液中为 1:100)并在室温下孵育 10 分钟,以使荧光团偶联到一抗结合位点的组织样品上。每次用TBST一式三份洗涤5分钟。
  5. 基于微波的剥离
    1. 用抗原检索缓冲液(柠檬酸盐缓冲液,pH 6.0)冲洗。
    2. 执行基于微波的剥离以去除原代-继发-HRP 复合物以引入下一个一抗(例如 CD20)。
    3. 将载玻片置于抗原检索缓冲液中,以100%功率微波加热50秒,然后在微波安全容器中以20%功率微波加热20分钟,并在室温下冷却15分钟。
    4. 重复步骤3.2.4至3.5.2,直到组织样品被所有一抗探针。
  6. 复斑和安装
    1. 在基于微波的抗原取回样缓冲液剥离和冷却后,用蒸馏水和TBST冲洗载玻片。
    2. 用4',6-二氨基-2-苯基吲哚(DAPI)溶液(1.0μg/ mL)在室温下的加湿室中孵育5分钟。
    3. 每次用TBST清洗3次5分钟。用水清洗一次,每次5分钟。
    4. 风干载玻片并使用适当的安装介质进行安装(请参见 材料表)。
      注:用于光谱库开发的单面载玻片不需要反染。

4. 图像和分析

  1. 准备光谱库幻灯片
    1. 使用相同的对照组织为每个荧光团、DAPI和自动荧光创建库载玻片(单染色参考图像),以进行多光谱图像分析。
    2. 使用来自RM女性和育龄女性的子宫内膜活检样本的载玻片,对每张载玻片进行步骤1.1至3.6.4进行单抗体检测(无需进一步添加抗体或荧光团)。
    3. 对于每个抗体检测,用DAPI染色其中一个载玻片(如步骤3.6.2),并保持一个未染色的载玻片,以检测光谱中任何可能的组织自动荧光。
    4. 使用工作站中的相应过滤器获取每种抗体的这组载玻片的图像,并将其上传到图像分析库中(如步骤4.2中所述)。
    5. 捕获图像后,选择 inForm 作为 光谱库源并构建光谱库。
    6. 使用荧光团时,从菜单中选择"污渍/荧光..."。
    7. 在选择染色剂或荧光团时,通过选择一个或多个组来缩小选择范围。选择" 全部 "以显示与图像兼容的所有光谱。
  2. 光谱成像
    注:图像是使用Mantra工作站捕获的,光谱库是使用inForm图像分析软件建立的。
    1. 使用工作站使用 表2 中建议的适当落射荧光滤光片(例如,DAPI,荧光素异硫氰酸酯[FITC],CY3,Texas Red和CY5)捕获单抗体染色载玻片的图像。
      注:针对本方案中使用的特定荧光团的推荐滤光片如 表2所示。
    2. 通过检查相应荧光通道中的每个标记物,确定最佳信号的合适曝光时间。
      注意:最佳信号是根据在单抗体染色中获得的阳性和定位的参考来确定的。
    3. 确定每种分析物(抗体-荧光团组合)的固定暴露时间,以标准化交叉样品比较。
      注:固定曝光的确定取决于感兴趣样品中的强度。
    4. 使用嵌入式自动对焦算法,在适当的扫描模式下扫描多重染色玻片。
      注:已建立的光谱库将用于将多光谱图像立方体区分为单个单独的组件(光谱拆分)。这将允许使用以下两个主要步骤处理所有感兴趣标记的基于颜色的识别:培训课程和图像分析课程。
  3. 图像分析
    1. 子宫内膜中所选免疫细胞类型的细胞计数
    2. 捕获至少 10 个字段,以便在 200 倍放大倍率下进行分析。
      注:这些字段是通过扫描整个部分而不进行任何选择来捕获的。这可以确保同时捕获子宫内膜的所有细胞成分,例如,腔内上皮边界,基质和腺体。
    3. 要对单元格进行计数,请单击步骤栏中的" 对对象进行计数 "按钮以显示 "对象计数设置" 面板。
    4. 选中 "触摸边缘时放弃对象 "框,以排除任何接触图像边缘、进程区域或组织区域的对象。
    5. 如果组织已被分割,请选择要在其中查找对象的组织 类别 。不要计算所选组织类别之外的对象。
    6. 选择所需的方法来标识对象:"基于对象"或"基于像素(阈值)"。
      注意:如果出现可靠或一致的污渍,应用简单阈值将产生对象像素,则应选择基于像素(阈值)的方法。当在物体染色缺乏一致性和特异性的情况下,需要更高级的基于形态学的方法时,建议使用基于对象的方法。
    7. 选择所需的 信号缩放: 自动缩放固定缩放
      注意:选择 "自动缩放" 将导致在执行对象分割之前自动缩放每个组件平面。当需要更好的分割性能,并且染色信号一致且可靠时,建议使用 固定刻度 选项。
    8. 从下拉列表中选择用于对象分割 的主要 组件。
    9. 将主要组件的 最小信号 值调整为所需的阈值。
    10. 要自动填充对象中的孔,请选择"填充孔"。
    11. 若要将接触其他对象的对象检测为单个对象,而不是作为一个对象,请在选中"最大大小(像素)"复选框后选中"优化拆分"复选框。
    12. 要根据对象的圆度排除对象,请选中 圆度 框并指定所需的 最小圆度
    13. 计数所有基质细胞(CD3/CD20/CD68/CD56和 DAPI+),包括血管周围的细胞。
    14. 单独计数免疫细胞,包括T细胞(CD3+和DAPI+),B细胞(CD20+和DAPI+),巨噬细胞(CD68+和DAPI+)和uNK细胞(CD56+和DAPI+)。
    15. 将数据表示为免疫细胞相对于每个捕获图像的基质细胞总数的百分比,并将最终细胞计数报告为所有字段的平均值。
    16. 使用 视图编辑器 查看后处理后生成的数据表。导出 计数数据表
    17. 子宫内膜免疫细胞空间分布的定量
    18. 在200倍放大倍率下,使用R程序估计L函数,范围为0-20μm,认为细胞间接触最大距离为14。
      注意 :R 语言工具箱"spatstat"用于测量 L 函数。
      1. 表示基于其L-功能曲线下面积(AUC)的不同免疫细胞对的聚类水平。

结果

执行4色多重检测以检测4种子宫内膜免疫细胞类型的总体示意图如图1所示。简而言之,这种多重免疫荧光染色的方案需要8个关键步骤:1.载玻片制备,2.表位检索,3.阻断,4.一抗应用,5.二抗应用,6.信号扩增,7.抗体去除,8.复染和安装。然后使用Mantra工作站进行图像渲染和分析,并使用inForm图像分析软件生成的光谱库,用于区分子宫内膜样品中的4种免疫细胞类型(

讨论

协议中的关键步骤
重要的是要注意,多重染色需要勤奋的优化。使用柠檬酸盐缓冲液和微波技术的抗原检索需要优化,以确保完全剥离抗体并保持组织活力。由于TSA试剂共价结合到抗原周围的位点,它们可以通过空间位阻(也称为"伞效应")潜在地抑制后续一抗的结合。当多个免疫标志物驻留在单个细胞室中并引起荧光团干扰时,往往会发生这种情况。为了确定是否会有效果,事?...

披露声明

作者声明他们没有利益冲突要披露。

致谢

本研究于2018年获香港妇产科信托基金及香港健康及医学研究基金(06170186,07180226)资助。

材料

NameCompanyCatalog NumberComments
Amplification DiluentPerkin ElmerFP1498Fluorophore diluent buffer
Antibody diluentPerkin ElmerARD1001EADiluting the antibody
CD3Spring BioscienceM3072Primary antibody
CD20Biocare MedicalCM004BPrimary antibody
CD56LeicaNCL-CD56-504Primary antibody
CD68Spring BioscienceM5510Primary antibody
Citrate Buffer Solution, pH 6.0 (10x)AbcamAB64214Antigen retrieval solution
EMSURE Xylene (isomeric mixture)Merck108297Dewaxing
Ethanol absoluteMerck107017Ethyl alcohol for rehydration
HistoCore BIOCUT Manual Rotary Leica MicrotomeLeicaRM2125RTSSectioning of paraffin-embedded tissue
inForm Advanced Image Analysis SoftwarePerkin ElmerinForm® Tissue Finder Software 2.2.1 (version 14.0)Data Analysis software
Mantra® WorkstationAkoya BiosciencesCLS140089Spectral imaging
MicrowavePanasonicInverterMicrowave stripping
Opal 520Perkin ElmerFP1487AAppropriate tyramide based fluorescent reagent
Opal 620Perkin ElmerFP1495AAppropriate tyramide based fluorescent reagent
Opal 650Perkin ElmerFP1496AAppropriate tyramide based fluorescent reagent
Opal 690Perkin ElmerFP1497AAppropriate tyramide based fluorescent reagent
OvenMemmertU10Dewaxing
Peroxidase Blocking SolutionDAKOS2023Removal of tissue peroxidase activities
Poly-L-lysine coated slideFISHER SCIENTIFIC120-550-15Slide for routine histological use
PolyHRP Broad SpectrumPerkin ElmerARH1001EASecondary antibody
ProLong™ Gold Antifade MountantThemoFisher ScientificP36930Mounting
Spatstat/Version 2.1-0Spatial point pattern analysis
Spectral DAPIPerkin ElmerFP1490ANucleic acid staining
Tissue ProcessorThermo FischerExcelsior ESTissue processing for dehydration and paraffination
Tris Buffer Saline (TBS), 10xCell Signaling Technology12498SWashing solution
Tween 20Sigma-AldrichP1370-1LNonionic detergent

参考文献

  1. ESHRE Guideline Group on RPL et al. ESHRE guideline: recurrent pregnancy loss. Human Reproduction Open. 2018 (2), 004 (2018).
  2. Stirrat, G. M. Recurrent miscarriage. Lancet. 336 (8716), 673-675 (1990).
  3. Rai, R., Regan, L. Recurrent miscarriage. Lancet. 368 (9535), 601-611 (2006).
  4. Royal College of Obstetricians & Gynaecologists. The investigation and treatment of couples with recurrent first-trimester and second-trimester miscarriage. Green-top Guideline No. 17. Royal College of Obstetricians & Gynaecologists. , (2011).
  5. King, A. Uterine leukocytes and decidualization. Human Reproduction Update. 6 (1), 28-36 (2000).
  6. Le Bouteiller, P., Piccinni, M. P. Human NK cells in pregnant uterus: why there. American Journal of Reproductive Immunology. 59 (5), 401-406 (2008).
  7. Lash, G. E., et al. Standardisation of uterine natural killer (uNK) cell measurements in the endometrium of women with recurrent reproductive failure. Journal of Reproductive Immunology. 116, 50-59 (2016).
  8. Yang, Y., et al. HOXA-10 and E-cadherin expression in the endometrium of women with recurrent implantation failure and recurrent miscarriage. Fertility and Sterility. 107 (1), 136-143 (2017).
  9. Tuckerman, E., Laird, S. M., Prakash, A., Li, T. C. Prognostic value of the measurement of uterine natural killer cells in the endometrium of women with recurrent miscarriage. Human Reproduction. 22 (8), 2208-2213 (2007).
  10. Jasper, M. J., et al. Macrophage-derived LIF and IL1B regulate alpha(1,2)fucosyltransferase 2 (Fut2) expression in mouse uterine epithelial cells during early pregnancy. Biology of Reproduction. 84 (1), 179-188 (2011).
  11. Kopcow, H. D., et al. T cell apoptosis at the maternal-fetal interface in early human pregnancy, involvement of galectin-1. Proceedings of the National Academy of Sciences of the United States of America. 105 (47), 18472-18477 (2008).
  12. Johnson, P. M., Christmas, S. E., Vince, G. S. Immunological aspects of implantation and implantation failure. Human Reproduction. 14, 26-36 (1999).
  13. Hong, G., et al. Multiplexed fluorescent immunohistochemical staining, imaging, and analysis in histological samples of lymphoma. Journal of Visualized Experiments: JoVE. (143), e58711 (2019).
  14. Carstens, J. L., et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nature Communications. 8, 15095 (2017).
  15. Zhao, Y., et al. The use of multiplex staining to measure the density and clustering of four endometrial immune cells around the implantation period in women with recurrent miscarriage: comparison with fertile controls. Journal of Molecular Histology. 51 (5), 593-603 (2020).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

174

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。