登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里,我们提出了一种以结构化方式导航支气管迷宫的协议,将支气管镜检查分成逐步方法——四个标志方法。

摘要

纤维支气管镜检查是一项技术上困难的手术,已被确定为最重要的手术,应整合到肺科医生基于模拟的培训计划中。然而,需要更具体的支气管镜检查培训指南来满足这一需求。为了确保患者能够胜任检查,我们提出了一种系统的、循序渐进的方法,将程序分为四个"里程碑",以支持新手内窥镜医师在支气管迷宫中导航。该程序可以根据三个既定的结果指标进行评估,以确保对支气管树进行彻底有效的检查:诊断完整性、结构化进展和手术时间。

丹麦的所有模拟中心都采用了依赖于四个地标的逐步方法,并正在荷兰实施。为了在培训时为新手支气管镜医师提供即时反馈,并减轻顾问的时间限制,我们建议未来的研究在培训新的支气管镜医师时应将人工智能作为反馈和认证工具。

引言

肺癌是癌症死亡的主要原因1.可弯曲支气管镜检查对于在支气管树中导航并确定肺癌诊断和分期的正确节段以及为患者分配正确治疗至关重要2.在受训者学习曲线的早期部分,诊断活检材料的产量较低,并发症发生率较高,患者不适感增加 3,4,5为确保对患者进行独立/无监督的实践,必须达到令人满意的教育水平。确保基本能力的一种培训方式是基于模拟的掌握学习,即受训者练习直到达到熟练程度标准6.已经开发了几种工具来评估支气管镜检查的性能7,8并且已经建立了以下性能指标:(1) 诊断完整性 (DC) - 可视化节段的比例9;(2) 结构化进度 (SP) - 按正确进度顺序访问的路段数10;(3) 手术时间 (PT) - 从通过声带到手术结束的时间9.

新手支气管镜医师可能会被迷宫弄糊涂,看起来像相似的支气管,并且有些人未能完成基于模拟的支气管镜检查课程11,尽管它已被确定为肺病学中最重要的技术程序12。因此,通过该协议,我们提出了通过支气管树的逐步结构化进展(图1),依靠四个标志作为指导。我们建议新手操作者应根据这种方法进行教学,以确保在最短的时间内以结构化的方式可视化所有支气管节段,并正确处理内窥镜。

研究方案

根据丹麦法律,没有患者参与的教育研究不需要伦理批准。

1. 范围的处理

  1. 左手握住支气管镜,左手拇指放在转向杆上,左手食指放在抽吸按钮上。用右手握住支气管镜的远端。
  2. 用直臂和手腕握住示波器,使吸力按钮直接指向前方,转向杆处于中立位置,定义为中立位置或 0°。通过扭动手腕,将示波器从中立位置/0° 转动。
  3. 上下移动拇指以弯曲和伸展内窥镜的远端。移动手腕和手,而不是手臂和身体。

2. 结构化进展:范围的角度和四个地标

  1. 通过口腔或鼻孔进入气道。通过声带进入气管。
  2. 从地标 1 到 4 系统地找到四个标志,并注意内窥镜在每个位置的正确角度(表 1)。
    注意:四个里程碑方法的设计令人难忘,以减少新型支气管镜医师的认知负荷。它基于支气管镜的角度和如何进入不同肺叶/地标之间的配对。因此,这种方法为新手学员提供了一个基本的训练工具,可以在支气管迷宫中导航。例如,通过了解支气管镜是否向右保持 90° 角,可以确定检查右上叶的正确位置。在可视化波瓣或地标时,应从指定角度延迟以检查各个部分。
  3. 按时间顺序从 1-10 找到线段,首先找到右侧,然后根据四个地标找到左侧。

3. 系统性支气管镜检查:四大标志方法

  1. 地标 1:从气管看到的带有左右主支气管的隆突(图 2
    1. 将支气管镜定位在气管远端,呈0°角 - 中立位置。如果方向丢失,请返回地标 1 重新定向。
  2. 地标 2:右段 1、2 和 3(上叶)(图 3
    1. 将内窥镜向右转动 90°,同时通过向下推动左拇指来研究上叶,将支气管镜的远端向上弯曲。这个地标类似于梅赛德斯之星。
    2. 可视化梅赛德斯星形时,从 90° 角度推迟以检查第 1、2 和 3 段。
  3. 地标 3:右段 4 和 5(中叶)加上 6、7、8、9 和 10(下叶)(图 4
    1. 通过将内窥镜的远端向右呈 45° 角放置,以查看第 4 段和第 5 段(从侧面倾斜角度的数字),继续进入中间支气管。
    2. 同样,从 45° 角推迟以检查第 4 段和第 5 段。回到 45° 角,用左手拇指向上推动炖煮器,以检查第 6 段(正好与中叶相对),从而延长内窥镜的尖端。
    3. 将示波器转到 0° 角并前进到下瓣。第 7 节位于内侧,第 8、9 和 10 节(从侧面以倾斜角度排列的数字)位于底部。从 0° 角开始延迟以检查第 7-10 段。
  4. 地标 4:左段 1+2、3、4 和 5(上叶),以及第 6、8、9 和 10 段(下叶)(图 5
    1. 将支气管镜移动到左主支气管(向左成 90° 角),向上看上叶,向下看下叶。
    2. 将内窥镜保持在 90° 角,用舌骨检查左上叶。从 90° 角推迟以检查第 1+2 和 3 段(左上叶)以及第 4 段和第 5 段(舌)。
    3. 回到左侧主支气管,将内窥镜转动至45°角,并伸出支气管镜的末端以检查第6段,该段与第4段和第5段(舌骨)相对。
    4. 将示波器转到 0° 角以可视化带有第 8、9 和 10 段的下瓣。从 0° 角推迟以检查段。
      注意:左侧没有第 7 段,因为该区域由心脏填充。第 4 段和第 5 段以及第 8、9 和 10 段遵循与右侧相同的编号,并从侧面以倾斜角度编号(图 6)。

结果

自 2011 年以来,CAMES 一直在教授四个里程碑方法,其中基于模拟的支气管镜课程通过最终测试结束 13.从 2015 年到 2017 年,有 77 名参与者参加了该课程,其中只有 33 人 (43%) 完成了11 门课程。完成率低是由于几个因素造成的:时间限制、课程不是强制性的、产假以及没有受保护的培训时间。在完成课程的人中,14人(42%)认为完成课程的最重要因素是:"基于系统...

讨论

我们建议对支气管节段进行系统而完整的检查,将支气管镜检查分为四个标志,以帮助指导新手支气管镜医师通过支气管迷宫。由于需要更具体的支气管镜检查培训指南14,我们建议应使用三种基本结局指标来评估我们的系统和阶梯式方法:DC、SP 和 PT。

DC 和 PT 是既定的结果测量方法,也是评估支气管镜检查性能时首次使用的指标9。支气管...

披露声明

作者没有什么可透露的。

致谢

作者没有致谢。

材料

NameCompanyCatalog NumberComments
Evis Exera IIOlympusNot providedEndoscopy Tower
BF-Q180 BronchoscopeOlympusNot providedFlexible Bronchoscope
CLA Broncho BoyCLANot providedBronchial Tree Phantom

参考文献

  1. Bray, F., et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 68 (6), 394-424 (2018).
  2. Andolfi, M., et al. The role of bronchoscopy in the diagnosis of early lung cancer: a review. Journal of Thoracic Disease. 8 (11), 3329-3337 (2016).
  3. Hsu, L. H., Liu, C. C., Ko, J. S. Education and experience improve the performance of transbronchial needle aspiration: a learning curve at a cancer center. Chest. 125 (2), 532-540 (2004).
  4. Ouellette, D. R. The safety of bronchoscopy in a pulmonary fellowship program. Chest. 130 (4), 1185-1190 (2006).
  5. Stather, D. R., MacEachern, P., Chee, A., Dumoulin, E., Tremblay, A. Trainee impact on procedural complications: An analysis of 967 consecutive flexible bronchoscopy procedures in an interventional pulmonology practice. Respiration. International Review of Thoracic Diseases. 85 (5), 422-428 (2013).
  6. McGaghie, W. C., Issenberg, S. B., Cohen, E. R., Barsuk, J. H., Wayne, D. B. Medical education featuring mastery learning with deliberate practice can lead to better health for individuals and populations. Academic Medicine. 86 (11), e8-e9 (2011).
  7. Konge, L., et al. Establishing pass/fail criteria for bronchoscopy performance. Respiration; International Review of Thoracic Diseases. 83 (2), 140-146 (2012).
  8. Konge, L., et al. Reliable and valid assessment of clinical bronchoscopy performance. Respiration; International Review of Thoracic Diseases. 83 (1), 53-60 (2012).
  9. Colt, H. G., Crawford, S. W., Galbraith 3rd, O. Virtual reality bronchoscopy simulation: A revolution in procedural training. Chest. 120 (4), 1333-1339 (2001).
  10. Cold, K. M., et al. Using structured progress to measure competence in flexible bronchoscopy. Journal of Thoracic Disease. 12 (11), 6797-6805 (2020).
  11. Cold, K. M., Konge, L., Clementsen, P. F., Nayahangan, L. J. Simulation-based mastery learning of flexible bronchoscopy: Deciding factors for completion. Respiration; International Review of Thoracic Diseases. 97 (2), 160-167 (2019).
  12. Nayahangan, L. J., et al. Identifying technical procedures in pulmonary medicine that should be integrated in a simulation-based curriculum: A national general needs assessment. Respiration; International Review of Thoracic Diseases. 91 (6), 517-522 (2016).
  13. Konge, L., Arendrup, H., von Buchwald, C., Ringsted, C. Using performance in multiple simulated scenarios to assess bronchoscopy skills. Respiration; International Review of Thoracic Diseases. 81 (6), 483-490 (2011).
  14. Kennedy, C. C., Maldonado, F., Cook, D. A. Simulation-based bronchoscopy training: systematic review and meta-analysis. Chest. 144 (1), 183-192 (2013).
  15. Sealy, W. C., Connally, S. R., Dalton, M. L. Naming the bronchopulmonary segments and the development of pulmonary surgery. The Annals of Thoracic Surgery. 55 (1), 184-188 (1993).
  16. Naur, T. M. H., Nilsson, P. M., Pietersen, P. I., Clementsen, P. F., Konge, L. Simulation-based training in flexible bronchoscopy and endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA): A systematic review. Respiration; International Review of Thoracic Diseases. 93 (5), 355-362 (2017).
  17. Sanz-Santos, J., et al. Systematic compared with targeted staging with endobronchial ultrasound in patients with lung cancer. The Annals of Thoracic Surgery. 106 (2), 398-403 (2018).
  18. Colella, S. Assessment of competence in simulated flexible bronchoscopy using motion analysis. Respiration; International Review of Thoracic Diseases. 89 (2), 155-161 (2015).
  19. Cold, K. M. Automatic and objective assessment of motor skills performance in flexible bronchoscopy. Respiration; International Review of Thoracic Diseases. 100 (4), 347-355 (2021).
  20. Follmann, A., Pereira, C. B., Knauel, J., Rossaint, R., Czaplik, M. Evaluation of a bronchoscopy guidance system for bronchoscopy training, a randomized controlled trial. BMC Medical Education. 19 (1), 430 (2019).
  21. Nilsson, P. M., Naur, T. M. H., Clementsen, P. F., Konge, L. Simulation in bronchoscopy: current and future perspectives. Advances in Medical Education and Practice. 8, 755-760 (2017).
  22. Strandbygaard, J., et al. A structured four-step curriculum in basic laparoscopy: development and validation. Acta Obstetricia et Gynecologica Scandinavica. 93 (4), 359-366 (2014).
  23. Konge, L., et al. The simulation centre at Rigshospitalet, Copenhagen, Denmark. Journal of Surgical Education. 72 (2), 362-365 (2015).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

196

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。