需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里,我们介绍了一种将转录组数据转换为mqTrans视图的协议,从而能够识别暗生物标志物。虽然在常规转录组学分析中没有差异表达,但这些生物标志物在 mqTrans 视图中表现出差异表达。该方法是对传统方法的补充技术,揭示了以前被忽视的生物标志物。

摘要

转录组代表样品中许多基因的表达水平,已广泛应用于生物学研究和临床实践中。研究人员通常专注于在表型组和对照组样本之间具有差异表示的转录组生物标志物。本研究提出了一个多任务图-注意力网络(GAT)学习框架来学习参考样本的复杂基因间相互作用。在健康样本 (HealthModel) 上预训练了一个示范参考模型,该模型可直接用于生成独立测试转录组的基于模型的定量转录调控 (mqTrans) 视图。通过预测任务和暗生物标志物检测证明了生成的转录组 mqTrans 视图。创造的术语“暗生物标志物”源于其定义,即暗生物标志物在 mqTrans 视图中显示差异表示,但在其原始表达水平上没有差异表达。由于缺乏差异表达,在传统的生物标志物检测研究中,深色生物标志物总是被忽视。管道 HealthModelPipe 的源代码和手册可以从 http://www.healthinformaticslab.org/supp/resources.php 下载。

引言

转录组由样品中所有基因的表达组成,可通过微阵列和 RNA-seq1 等高通量技术进行分析。数据集中一个基因的表达水平称为转录组学特征,表型组和对照组之间转录组特征的差异表示将该基因定义为该表型的生物标志物 2,3。转录组生物标志物在疾病诊断4、生物学机制5和生存分析67等研究中得到广泛应用。

健康组织中的基因活性模式携带有关生命的重要信息8,9。这些模式提供了宝贵的见解,并作为理解良性疾病10,11和致命疾病12的复杂发展轨迹的理想参考。基因相互作用,转录组代表其复杂相互作用后的最终表达水平。这种模式被表述为转录调控网络13和代谢网....

研究方案

注意:以下协议描述了主要模块的信息学分析过程和 Python 命令的详细信息。图 2 说明了该协议中使用的示例命令的三个主要步骤,有关更多技术细节,请参阅以前发表的作品26,38。在计算机系统中的普通用户帐户下执行以下协议,并避免使用管理员或 root 帐户。这是一个计算协议,没有生物医学危害因素。

1. 准备 Python 环境

  1. 创建虚拟环境。
    1. 本研究使用了 Python 编程语言和 Python 3.7 的 Python 虚拟环境 (VE)。请按照下列步骤操作(图 3A):
      conda create -n healthmodel python=3.7
      conda create
      是用于创建新 VE 的命令。参数 -n 指定新环境的名称,在本例中为 healthmodelpython=3.7 指定要安装的 Python 版本。选择支持上述命令的任何首选名称和 Python 版本。
    2. 运行命令后,输出类似于

结果

评估转录组数据集的 mqTrans 视图
测试代码使用 11 种特征选择 (FS) 算法和 7 种分类器来评估转录组数据集生成的 mqTrans 视图对分类任务的贡献(图 6)。测试数据集由来自癌症基因组图谱 (TCGA) 数据库29 的 317 个结肠腺癌 (COAD) 组成。I期或II期的COAD患者被视为阴性样本,而III期或IV期的COAD患者为阳性样本。

测试代?.......

讨论

该协议的第 2 部分(使用预先训练的 HealthModel 生成 mqTrans 特征)是该协议中最关键的步骤。在第 1 节中准备计算工作环境后,第 2 节基于预训练的大型参考模型生成转录组数据集的 mqTrans 视图。第 3 节是为生物标志物检测和预测任务选择生成的 mqTrans 特征的示范性示例。用户可以使用自己的工具或代码在此 mqTrans 数据集上进行其他转录组学分析。

原始 HealthModel 框架可以使用.......

披露声明

作者没有什么可透露的。

致谢

本研究得到了贵州省科技项目(ZK2023-297)、贵州省卫健委科技基金(gzwkj2023-565)、吉林省教育厅科技项目(JJKH20220245KJ JJKH20220226SK)、国家自然科学基金(U19A2061)、吉林省大数据智能计算重点实验室等单位的支持(20180622002JC)和中央高校基础科研基金(JLU.我们衷心感谢审稿编辑和三位匿名审稿人的建设性批评,这些批评在大大提高本协议的严谨性和清晰度方面发挥了重要作用。

....

材料

NameCompanyCatalog NumberComments
AnacondaAnacondaversion 2020.11Python programming platform
ComputerN/AN/AAny general-purpose computers satisfy the requirement
GPU cardN/AN/AAny general-purpose GPU cards with the CUDA computing library
pytorchPytorchversion 1.13.1Software
torch-geometricPytorchversion 2.2.0Software

参考文献

  1. Mutz, K. -. O., Heilkenbrinker, A., Lönne, M., Walter, J. -. G., Stahl, F. Transcriptome analysis using next-generation sequencing. Curr Opin in Biotechnol. 24 (1), 22-30 (2013).
  2. Meng, G., Tang, W., Huang, E., Li, Z., Feng, H.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

205

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。