Human Cytomegalovirus (HCMV) infection of neonates represents an important cause of mental retardation, yet the molecular events leading to virus-induced pathogenesis are still poorly understood. To investigate the dynamics of brain infection, we adapted whole-animal in vivo imaging to perform time-course analysis of neonates infected with a luciferase-recombinant virus.
In this video, we will demonstrate modification techniques for porous metallic implants to improve their functionality and to control cell migration. Techniques include development of pore gradients to control cell movement in 3D and production of basement membrane mimics to control cell movement in 2-D. Also, a HPLC-based method for monitoring implant integration in-vivo via analysis of blood proteins is described.
We describe a protocol to examine the development of opioid-induced hyperalgesia and tolerance in mice. Based on the measurement of thermal and mechanical nociceptive responses of naïve and morphine-treated animals, it allows to quantify the increase in pain sensitivity (hyperalgesia) and decrease in analgesia (tolerance) associated with chronic opiate administration.
Neuropathic pain is a consequence of a lesion or disease affecting the somatosensory system. The “cuff model” of neuropathic pain in mice consists of the implantation of a polyethylene cuff around the main branch of the sciatic nerve. Mechanical allodynia is tested using von Frey filaments.
This protocol describes a method for the photoconversion of Kaede fluorescent protein in endocardial cells of the living zebrafish embryo that enables the tracking of endocardial cells during atrioventricular canal and atrioventricular heart valve development.
This article describes the microfluidic process and parameters to prepare actuating particles from liquid crystalline elastomers. This process allows the preparation of actuating particles and the variation of their size and shape (from oblate to strongly prolate, core-shell, and Janus morphologies) as well as the magnitude of actuation.
The protocol described here is based on the genome-wide quantification of newly synthesized mRNA purified from yeast cells labeled with 4-thiouracil. This method allows to measure mRNA synthesis uncoupled from mRNA decay and, thus, provides an accurate measurement of RNA polymerase II transcription.
We describe a protocol to photogenerate N-heterocyclic carbenes (NHCs) by UV irradiation of a 2-isopropylthioxanthone/imidazolium tetraphenylborate salt system. Methods to characterize the photoreleased NHC and elucidate the photochemical mechanism are proposed. The protocols for ring-opening metathesis photopolymerization in solution and miniemulsion illustrate the potential of this 2-component NHC photogenerating system.
Here, we present a protocol for in vivo validation of hydrogel-based cell therapy, illustrated by the example of islet transplantation. h-Omental Matrix Islet filliNG (hOMING) implantation allows implantation of a cell-hydrogel mixture between the omental layers, near to blood vessels, to maximize engraftment in a proper metabolic environment.
This method uses mass spectrometry imaging (MSI) to understand metabolic processes in S. alba leaves when exposed to xenobiotics. The method allows the spatial localization of compounds of interest and their predicted metabolites within specific, intact tissues.
Presented here is a protocol for the determination of oligomeric state of membrane proteins that utilizes a native cell membrane nanoparticle system in conjunction with electron microscopy.
Here, we present a protocol to analyze ultrastructure of the megakaryocytes in situ using transmission electron microscopy (TEM). Murine bone marrows are collected, fixed, embedded in epoxy resin and cut in ultrathin sections. After contrast staining, the bone marrow is observed under a TEM microscope at 120 kV.
This method describes the purification by flow cytometry of MEP and MKp from mice femurs, tibias, and pelvic bones.
This protocol describes in detail all the steps involved in obtaining leukofilter-derived CD34+ hematopoietic progenitors and their in vitro differentiation and maturation into proplatelet-bearing megakaryocytes that are able to release platelets in the culture medium. This procedure is useful for in-depth analysis of cellular and molecular mechanisms controlling megakaryopoiesis.
Here, we detail the bone marrow explant method, from sample preparation to microscopic slide analysis, to evaluate the ability of megakaryocytes which have differentiated in their physiological environment to form proplatelets.
It is now acknowledged that the three-dimensional environment of cells can play an important role in their behavior, maturation and/or differentiation. This protocol describes a three-dimensional cell culture model designed to study the impact of physical containment and mechanical constraints on megakaryocytes.
We describe here the method for imaging megakaryocytes and proplatelets in the marrow of the skull bone of living mice using two-photon microscopy.
Presented here is an efficient protocol for the fluorescence-activated cell sorting (FACS) isolation of mouse limb muscle satellite cells adapted to the study of transcription regulation in muscle fibers by cleavage under targets and release using nuclease (CUT&RUN).
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten