Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Method Article
Herein we present a method to synthesize ligand-free cadmium sulfide (CdS) nanoparticles based on a unique sulfur copolymer. The sulfur copolymer operates as a high temperature solvent and a sulfur source during the nanoparticle synthesis and stabilizes the nanoparticles after the reaction.
Aliphatic ligands are typically used during the synthesis of nanoparticles to help mediate their growth in addition to operating as high-temperature solvents. These coordinating ligands help solubilize and stabilize the nanoparticles while in solution, and can influence the resulting size and reactivity of the nanoparticles during their formation. Despite the ubiquity of using ligands during synthesis, the presence of aliphatic ligands on the nanoparticle surface can result in a number of problems during the end use of the nanoparticles, necessitating further ligand stripping or ligand exchange procedures. We have developed a way to synthesize cadmium sulfide (CdS) nanoparticles using a unique sulfur copolymer. This sulfur copolymer is primarily composed of elemental sulfur, which is a cheap and abundant material. The sulfur copolymer has the advantages of operating both as a high temperature solvent and as a sulfur source, which can react with a cadmium precursor during nanoparticle synthesis, resulting in the generation of ligand free CdS. During the reaction, only some of the copolymer is consumed to produce CdS, while the rest remains in the polymeric state, thereby producing a nanocomposite material. Once the reaction is finished, the copolymer stabilizes the nanoparticles within a solid polymeric matrix. The copolymer can then be removed before the nanoparticles are used, which produces nanoparticles that do not have organic coordinating ligands. This nascent synthesis technique presents a method to produce metal-sulfide nanoparticles for a wide variety of applications where the presence of organic ligands is not desired.
Obwohl für die Synthese, herkömmliche aliphatische Liganden nützlich erwiesen präsentieren eine Reihe von Herausforderungen für die Ausführung von Nanopartikeln in photonischer und elektrochemischen Vorrichtungen. Aliphatische Liganden sind hochisolierenden, hydrophobe und eine signifikante Barriere für elektrochemische Oberflächenreaktionen darstellen. 1 Dementsprechend haben mehrere Studien einen Ligandenaustausch entwickelt und Ligand Stripping - Protokolle , die diese aliphatischen Liganden mit funktionellen Komponenten ersetzen oder dass die Liganden abstreifen zu einem nackten Nanopartikel zeigen Oberfläche . 1 - 3 Diese Reaktionen stellen jedoch mehrere intrinsische Probleme. Sie fügen hinzu , wesentlich zu der Komplexität des Syntheseverfahrens, nicht immer vollständig ablaufen, und kann die Oberfläche der Nanopartikel verschlechtern, was wiederum erhebliche Probleme bei der Vorrichtungsherstellung verhängen kann , wenn diese Techniken verwenden. 4
Wir haben ein Schwefel-Copolymer entwickelt,Dieses Copolymer basiert auf einem Netzwerk - Copolymer von Chung et al entwickelt wurden, können sowohl als Hochtemperatur - Lösungsmittel und Schwefel 5 bei der Synthese von CdS - Nanopartikeln. Quelle verwendet werden. , die elementaren Schwefel verwendet und 1,3-Diisopropenylbenzol (DIB). In 6 unserem Fall wird ein Methylstyrolmonomer anstelle von DIB umgesetzt. Die Methylstyrolmonomer Grenzen Vernetzungsreaktionen, die sonst ein hochmolekulares Netzwerk Copolymer erzeugen würde. 5,6 Das Vorhandensein von nur einer vinylische funktionelle Gruppe auf dem Methylstyrolmonomer fördert die Bildung von oligomeren Reste einmal erhitzt wird , die die Schwefel - Copolymer ermöglicht, arbeiten als ein flüssiges Lösungsmittel und Schwefelquelle parallel während der Nanopartikelsynthese. 5 Insbesondere wird die Schwefel - Polymer durch Erhitzen von elementarem Schwefel auf 150 ° C, gewonnen wird , die S 8 Ringe führt zu einem linear strukturierten flüssigen Schwefels Diradikal Form zu überführen . Als nächstes wird i -Methylstyrol injizierten nin der flüssige Schwefel in einer 01.50 Molverhältnis von Methyl Moleküle Schwefelatome. 5 ist die Methyldoppelbindung mit den Schwefelketten reagiert , um das Copolymer herzustellen, wie in Abbildung 1 dargestellt. 5 Der Schwefel - Copolymer wird dann abgekühlt und das Kadmium - Vorläufer hinzugefügt. Diese Mischung wird dann auf 200 ° C aufgewärmt, bei der das Schwefel - Copolymer schmilzt und die Nanopartikel Keimbildungs- und Wachstumsprozesse in der Lösung eingeleitet 5 A . 20: 1 molares Verhältnis von Schwefel zu Kadmium - Vorläufer verwendet wird, so dass nur einige der Schwefel wird während der Reaktion verbraucht wird . 5 das Copolymer die Nanopartikel stabilisiert , indem sie in einer festen Polymermatrix suspendiert , sobald die Reaktion beendet wurde. 5 das Copolymer kann nach der Synthese entfernt werden, bei der Herstellung von CdS - Nanopartikel führt , die nicht über organische koordinierende Liganden, wie in Figur 2 dargestellt ist . 5
ontent "> Das Syntheseverfahren in dieser Arbeit vorgestellten ist relativ einfach im Vergleich zu anderen in der Literatur vorgestellten Methoden . 1 -. 3,7 Sie ist für ein breites Spektrum von Anwendungen , bei denen traditionelle ligierten Nanopartikel problematisch oder unerwünscht erwiesen Diese Technik kann offene Türen zu höheren Durchsatz - Tests, in denen eine Charge von Nanopartikeln ein komplettes Spektrum an nachfolgende Funktionalisierungen ohne die Notwendigkeit komplexer und zeitraubend Ligand Strippen oder Austauschverfahren zu prüfen , verwendet werden kann. 2,4,8,9 Diese ungebundenen Nanopartikel bieten auch Chancen zu reduzieren , die Anzahl der Kohlenstoff Defekte üblicherweise in gedruckten Nanopartikels Vorrichtungen beobachtet, durch eliminieren der Kohlenstoffquelle . 10 - 16 Diese detaillierte Protokoll anderen soll helfen , diese neue Methode implementieren und in einer Vielzahl von Bereichen Sporn seiner aktiven Verwendung zu helfen , die zu finden es von besonderer Bedeutung.Achtung: Cadmium-Vorstufen sind hochgiftig und müssen mit großer Sorgfalt behandelt werden. Geeignete Schutzausrüstung tragen, entsprechende technische Kontrollen und konsultieren relevanten Materialien Sicherheitsdatenblätter (MSDS). Darüber hinaus kann die Bildung von Nanopartikeln zusätzliche Gefahren darstellen. Die hier beschriebenen Reaktionen werden mit einem Standard-Vakuumgasverteiler durchgeführt, um die Versuche innerhalb einer inerten Atmosphäre durchzuführen. Alle Chemikalien wurden im Handel erworben und wie erhalten verwendet. Dieses Protokoll basiert auf einem vorher Syntheseverfahren entwickelt, die wir vor kurzem an anderer Stelle beschrieben. 5
1. Schwefel-Copolymer-Synthese
2. CdS Nanopartikelsynthese
3. Entfernen Sie die Schwefel-Copolymer und Isolieren der Nanopartikel
4. Charakterisieren Sie die CdS-Nanopartikel
Das TEM - Bild in 3a zeigt kleine CdS - Nanopartikel (3-4 nm) , die innerhalb des Schwefels Copolymer nukleiert sind , bevor der Schwefel - Copolymer vollständig entfernt wurde. Das Bild in 3a wurde bestimmt , indem ein Aliquot der Nanopartikellösung erfasst , unmittelbar nachdem die Lösung , die 200 ° C erreicht. 3b zeigt größere Nanopartikel (7-10 nm) , die für 30 min in Lösung gezüchtet wurden , bevor der Schwefel - Copolymer vollständig war entfernt.
We have developed a method to synthesize CdS nanoparticles within a sulfur copolymer matrix. This sulfur copolymer is composed of elemental sulfur and methylstyrene.5 An important feature of this method is that the copolymer can be used as both a high-temperature solvent and a sulfur source that reacts with a cadmium precursor to produce CdS nanoparticles in solution.5 The critical step in the procedure is the synthesis of the sulfur copolymer with a suitable ratio of methylstyrene and sulfur. The u...
The authors disclose no competing financial interests.
The authors would like to acknowledge the State of Washington for supporting this research through the University of Washington Clean Energy Institute Exploratory Fellowship Program, and National Science Foundation (NSF) Sustainable Energy Pathway (SEP) Award CHE-1230615.
Name | Company | Catalog Number | Comments |
Sulfur (S8), 99.5% | Sigma Aldrich | 84683 | |
α-methylstyrene, 99% | Sigma Aldrich | M80903 | |
Cadmium acetylacetonate (Cd(acac)), 99.9% | Sigma Aldrich | 517585 | Highly Toxic |
Chloroform (CHCl3), 99.5% | Sigma Aldrich | C2432 | |
Hotplate / magnetic stirrer | IKA RCT | 3810001 | |
Temperature controller with probe and heating mantle | Oakton Temp 9000 | WD-89800 | |
Centrifuge | Beckman Coulter Allegra X-22 | 392186 | |
Centrifuge Tubes | Thermo Scientific | 3114 | Teflon for resistance to chlorinated solvents |
TEM with attached EDS detector | FEI Tecnai G2 F-20 with EDAX detector | ||
TEM Sample Grid | Ted Pella | 1824 | Ultrathin carbon film substrate with holey carbon support films on a 400 mesh copper grid |
XRD | Bruker F-8 Focus Diffractometer | ||
Molybdenum coated soda lime glass substrates | 750 nm thick sputtered molybdenum layer | ||
Quartz Fluorescence Cuvettes | Sigma Aldrich | Z803073 | 10 mm by 10 mm, 4 polished sides with screw top |
UV-Vis-NIR | Perkin Elmer Lambda 1050 Spectrometer | With 3D WB Detector Module | |
PL | Horiba FL3-21tau Fluorescence Spectrophotometer |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten