Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

In diesem Artikel

  • Zusammenfassung
  • Zusammenfassung
  • Einleitung
  • Protokoll
  • Ergebnisse
  • Diskussion
  • Offenlegungen
  • Danksagungen
  • Materialien
  • Referenzen
  • Nachdrucke und Genehmigungen

Zusammenfassung

Dieses Protokoll beschreibt den Aufbau eines Schicht-für-Schicht-Janus-Basis-Nanomatrix-Gerüsts (JBNm) durch nacheinander Hinzufügen von Janus-Basis-Nanoröhren (JBNts), Matrilin-3 und Transforming Growth Factor Beta-1 (TGF-β1). Der JBNm wurde hergestellt und charakterisiert; Darüber hinaus zeigte es eine ausgezeichnete Bioaktivität, die Zellfunktionen wie Adhäsion, Proliferation und Differenzierung fördert.

Zusammenfassung

Verschiedene Biomaterial-Scaffolds wurden entwickelt, um die Zelladhäsion und -proliferation zu steuern, in der Hoffnung, spezifische Funktionen für In-vitro - und In-vivo-Anwendungen zu fördern. Die Zugabe von Wachstumsfaktoren in diese Biomaterialgerüste erfolgt im Allgemeinen, um eine optimale Zellkulturumgebung zu schaffen, die die Zelldifferenzierung und ihre nachfolgenden Funktionen vermittelt. Die Wachstumsfaktoren in einem herkömmlichen Biomaterialgerüst sind jedoch typischerweise so konzipiert, dass sie bei der Implantation freigesetzt werden, was zu unbeabsichtigten Nebenwirkungen auf das umgebende Gewebe oder die Zellen führen kann. Hier ist es der DNA-inspirierten Janus-Basis-Nanomatrix (JBNm) gelungen, eine hochlokalisierte Mikroumgebung mit einer Schicht-für-Schicht-Struktur für selbsttragende Knorpelgewebekonstrukte zu erreichen. JBNms sind selbstorganisierend aus Janus-Basis-Nanoröhrchen (JBNts), Matrilin-3 und dem transformierenden Wachstumsfaktor beta-1 (TGF-β1) über Bioaffinität. Der JBNm wurde in einem TGF-β1:matrilin-3:JBNt-Verhältnis von 1:4:10 zusammengebaut, da dies das bestimmte Verhältnis war, bei dem eine ordnungsgemäße Montage in die Schicht-für-Schicht-Struktur erfolgen konnte. Zunächst wurde die TGF-β1-Lösung zur Matrilin-3-Lösung gegeben. Dann wurde diese Mischung mehrmals pipettiert, um eine ausreichende Homogenität vor der Zugabe der JBNt-Lösung zu gewährleisten. Dieser bildete Schicht für Schicht JBNm, nachdem er erneut mehrfach pipettiert hatte. Eine Vielzahl von Experimenten wurde durchgeführt, um die Schicht-für-Schicht-JBNm-Struktur, JBNts allein, Matilin-3 allein und TGF-β1 allein zu charakterisieren. Die Bildung von JBNm wurde mit UV-Vis-Absorptionsspektren untersucht, und die Struktur des JBNm wurde mit Transmissionselektronenmikroskopie (TEM) beobachtet. Da das innovative schichtweise JBNm-Gerüst auf molekularer Ebene gebildet wird, konnte der fluoreszierende Farbstoff JBNm beobachtet werden. Das TGF-β1 ist in der inneren Schicht des injizierbaren JBNm eingeschlossen, was die Freisetzung von Wachstumsfaktoren in die Umgebung verhindern, die lokalisierte Chondrogenese fördern und eine antihypertrophe Mikroumgebung fördern kann.

Einleitung

Gerüste im Tissue Engineering spielen eine wichtige Rolle bei der strukturellen Unterstützung der Zellanheftung und der anschließenden Gewebeentwicklung1. Typischerweise verlassen sich konventionelle Gewebekonstrukte ohne Gerüst auf die Zellkulturumgebung und zusätzliche Wachstumsfaktoren, um die Zelldifferenzierung zu vermitteln. Darüber hinaus ist diese Zugabe von bioaktiven Molekülen in Gerüste oft der bevorzugte Ansatz zur Steuerung der Zelldifferenzierung und -funktion 2,3. Einige Gerüste können die biochemische Mikroumgebung nativer Gewebe unabhängig voneinander nachahmen, während....

Protokoll

1. Synthese von JBNts

  1. Herstellung des JBNt-Monomers unter Verwendung zuvor veröffentlichter Methoden, die die Synthese einer Vielzahl von Verbindungenbeinhalten 12.
  2. Reinigen Sie das rohe JBNt-Monomer, nachdem es mit Hochleistungsflüssigkeitschromatographie (HPLC) unter Verwendung einer Umkehrphasensäule synthetisiert wurde. Verwenden Sie Lösungsmittel A: 100% Wasser, Lösungsmittel B: 100% Acetonitril und Lösungsmittel C: HCl-Wasserlösung mit pH = 1. Verwenden Sie eine Durchflussrate von 3 ml/min. Sammeln Sie den größten in der HPLC erhaltenen Peak nach 7,2 min.

2. Fert....

Ergebnisse

Nach dem Protokoll wurden JBNts erfolgreich synthetisiert und mit UV-Vis-Absorption und TEM charakterisiert. Das JBNm ist ein injizierbares festes Gerüst, das einen schnellen biomimetischen Prozess durchläuft. Nachdem JBNts zu einer Mischung aus TGF-β1/Matrilin-3-Lösung in einer physiologischen Umgebung gegeben wurden, bildete sich ein festes Weißmaschengerüst, das auf den erfolgreichen Zusammenbau von JBNm hinweist, wie in Abbildung 1 zu sehen ist. Dies wurde in den Charakterisierungs.......

Diskussion

Das Ziel dieser Studie ist es, eine biomimetische Gerüstplattform, das JBNm, zu entwickeln, um die Einschränkungen herkömmlicher Gewebekonstrukte zu überwinden, die auf Zellkulturumgebungen angewiesen sind, um die Zelldifferenzierung zu vermitteln. Das JBNm ist ein Schicht-für-Schicht-Strukturgerüst für ein selbsttragendes Knorpelgewebekonstrukt. Das innovative Design basiert auf neuartigen DNA-inspirierten Nanomaterialien, den JBNts. Das JBNm, bestehend aus JBNts30, TGF-β1 und Matrilin-3,.......

Offenlegungen

Dr. Yupeng Chen ist Mitbegründer von Eascra Biotech, Inc. und NanoDe Therapeutics, Inc.

Danksagungen

Diese Arbeit wird durch die NIH-Zuschüsse 7R01AR072027 und 7R03AR069383, den NSF Career Award 1905785, die NSF 2025362 und die University of Connecticut unterstützt. Diese Arbeit wird teilweise auch durch den NIH-Zuschuss S10OD016435 unterstützt.

....

Materialien

NameCompanyCatalog NumberComments
10 % Normal Goat SerumThermo Fisher50062ZAgent used to block nonspecific antibody binding actions during staining.
24-well plateCorning07-200-74024-well plate used for comparative cell culture.
384-Well Black Untreated PlateThermo Fisher262260384-well plate used for absorption measurements.
8-well chambered coverglassThermo Fisher155409PK8-well coverglass used for comparative cell culture.
96-well flat bottomCorning07-200-9196-well plate used for comparative cell culture.
96-Well Plate non- treatedThermo Fisher26089596-well plate used for comparative cell culture and analysis.
Agarose GelSigma-AldrichA9539Hydrogel used for cell culture.
Agarose GelSigma AldrichA9539Hydrogel used as an environment for cell culture.
Alexa Fluor Microscale Protein Labeling KitThermo FisherA30006 (488) and A30007 (555)Fluorescent dye used to label proteins.
Anti-Collagen X AntibodyThermo Fisher41-9771-82Antibody used to stain collagen-X.
Bio-Rad PCR MachineBio-RadEquipment used to perform PCR on samples.
C28/I2 Chondrocyte Cell LineCells used to analyze proliferative abilities of various samples.
Cell Counting Kit 8Milipore Sigma96992Cell proliferation assay.
Cell ProfilerBroad InstituteSoftware used to analyze cell images.
Cryostat MicrotomeEquipment used to produce thin segments of samples for use in staining and microscopy.
DAPIInvitrogenD1306Blue fluorescent stain that binds to adenine-thymine DNA regions.
Disposable cuvettesFISHER Scientific14-955-128Container used for spectrophotometry.
DMEM Cell Culture MediumThermo Fisher10566032Media used to support cellular growth.
Fetal Bovine SerumGIBCOA4766801Serum used in cell culture medium to support cell growth.
Fluoromount-G Mounting MediumThermo Fisher00-4958-02Solution used to mount slides for immunostaining.
FormaldehydeCompound used to fix samples prior to microtoming.
Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary AntibodyThermo FisherA16110Antibody used for protein staining.
Human Mesenchymal Stem CellsLONZAPT-2501Cells used to analyze differentiative abilities of various samples.
Human Mesenchymal Stem Chondrogenic MediumLONZAPT-3003Cell medium used to promote chondrogenic differentiation.
ImageJNational Institutes of HealthImage analysis software used in conjunction with microscopy.
itaq Universal SYBR Green One-Step KitBioRad1725150Kit used for PCR.
Janus-base nanotubes (JBNts)Nanotube made from synthetic nucleobases to act as cell scaffolding tool.
LaB6 20-120 kV Transmission Electronic MicroscopeTecnaiEquipment used to perform transmission electron microscopy on a sample.
MATLABMathWorksStatistical software used for modeling and data analysis.
Matrilin-3Fisher Scientific3017MN050Structural protein used as adhesion sites for chondrocytes.
NanoDrop SpectrophotometerThermo FisherEquipment used to measure absorption values of a sample.
Nikon A1R Spectral Confocal MicroscopeNikonA1R HD25Confocal microscope used to analyze samples.
Number 1.5 Chamber CoverglassThermo Fisher152250Environment for sterile cell culture and imaging.
Optimal Cutting Temperature Compound ReagentCompound used to embed cells prior to microtoming.
ParaformaldehydeThermo ScientificAAJ19943K2Compound used to fix cells.
PDC-32G Plasma CleanerHarrick PlasmaCleaner used to prepare grids prior to transmission electron microscopy.
penicillin-streptomycinGIBCO15-140-148Antibiotic agent used to discourage bacterial growth during cell culture.
Phosphate Buffered SalineThermo Fisher10010023Solution used to wash cell medium and act as a buffer during experimentation.
Rhodamine-phalloidinInvitrogenR415F-Actin red fluorescent dye.
Rneasy Plant Mini KitQIAGEN74904Kit used to filter and homogenize samples during RNA extraction.
Sucrose SolutionSolution used to process samples prior to microtoming.
TGF beta-1 Human ELISA KitInvitrogenBMS249-4Assay kit used to determine the presence of TGF-β1 in a sample.
TGF-β1PEPROTECH100-21CGrowth factor used for the stimulation of chondrogenic differentiation and proliferation.
Triton-XInvitrogenHFH10Compound used to lyse cells not fixed during staining process.
TRIzol ReagentThermo Fisher15596026Reagent used to isolate RNA.
Zetasizer Nano ZSMalvern PanalyticalEquipment used to measure zeta-potential values of a sample.

Referenzen

  1. Chan, B. P., Leong, K. W. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European Spine Journal. 17, 467-479 (2008).
  2. Heo, D. N., et al.

Nachdrucke und Genehmigungen

Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden

Genehmigung beantragen

Weitere Artikel entdecken

BioengineeringAusgabe 185

This article has been published

Video Coming Soon

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten