Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Method Article
Este documento proporciona un protocolo detallado para preparar rejillas de muestra a temperaturas de hasta 70 ° C, antes de la congelación por inmersión para experimentos crio-EM.
Las rejillas de muestreo para experimentos de criomicroscopía electrónica (crio-EM) se preparan generalmente a una temperatura óptima para el almacenamiento de muestras biológicas, principalmente a 4 °C y ocasionalmente a temperatura ambiente. Recientemente, descubrimos que la estructura de proteínas resuelta a baja temperatura puede no ser funcionalmente relevante, particularmente para proteínas de arqueas termófilas. Se desarrolló un procedimiento para preparar muestras de proteínas a temperaturas más altas (hasta 70 °C) para el análisis crio-EM. Demostramos que las estructuras de muestras preparadas a temperaturas más altas son funcionalmente relevantes y dependientes de la temperatura. Aquí describimos un protocolo detallado para preparar rejillas de muestra a alta temperatura, utilizando 55 ° C como ejemplo. El experimento utilizó un aparato de vitrificación modificado con un tubo centrífugo adicional, y las muestras se incubaron a 55 °C. Los procedimientos detallados se ajustaron para minimizar la condensación de vapor y obtener una fina capa de hielo en la rejilla. Se proporcionan ejemplos de experimentos exitosos y no exitosos.
La tecnología crio-EM para resolver las estructuras de complejos proteicos ha continuado mejorando, particularmente en la dirección de la obtención de estructuras de alta resolución 1,2. Mientras tanto, el panorama de su aplicación también se ha ampliado variando las condiciones de la muestra, como el pH o los ligandos, antes del proceso de vitrificación3, que implica la preparación de rejillas de muestra seguidas de congelación por inmersión 4,5. Otra condición importante es la temperatura. Aunque los experimentos crio-EM, como la cristalografía de rayos X, se realizan a bajas temperaturas, la estructura resuelta por cryo-EM refleja la estructura en el estado de solución antes de la vitrificación. Hasta hace poco, la mayoría de los estudios crio-EM de análisis de partículas individuales (SPA) utilizan muestras que se mantienen en hielo (es decir, a 4 °C) antes de la vitrificación6, aunque varios estudios utilizan muestras a una temperatura ambiente de alrededor de 7,8,9,10 o tan alta como 42 °C 11. En un informe reciente, realizamos estudios dependientes de la temperatura de la enzima cetol-ácido reductoisomerasa (KARI) de la arquea termófila Sulfolobus solfataricus (Sso) a seis temperaturas diferentes de 4 ° C a 70 ° C12. Nuestros estudios sugieren que es importante preparar rejillas de muestra a temperaturas funcionalmente relevantes y que la crio-EM es el único método estructural que es prácticamente factible para resolver la estructura del mismo complejo proteico a múltiples temperaturas.
La principal dificultad para la vitrificación a altas temperaturas es minimizar la condensación de vapor y lograr hielo delgado. Aquí informamos el protocolo detallado utilizado para preparar rejillas de muestra a altas temperaturas en nuestro estudio previo del Sso-KARI 12. Asumimos que los lectores o espectadores ya tienen experiencia en la preparación general de muestras y los procedimientos de procesamiento de datos para experimentos crio-EM y enfatizamos los aspectos relevantes para la alta temperatura.
NOTA: Este protocolo tiene como objetivo utilizar un aparato de vitrificación comercial modificado para preparar las muestras de criomicroscopía electrónica (crio-EM) a temperaturas específicas, especialmente superiores a 37 °C. La configuración experimental general se muestra en la Figura 1. El protocolo utiliza 55 °C como ejemplo. Para las condiciones específicas a otras temperaturas, véase el cuadro complementario 2 en la referencia12.
1. Preparación del aparato de vitrificación
2. Calentamiento de la muestra y las herramientas
3. Preparación para el experimento de transferencia
4. Experimento de transferencia
NOTA: Cuando sostenga la rejilla, asegúrese de que la rejilla sea estable y que haya un área de contacto mínima con las pinzas (Figura 4). Esto se hace para mantener la mejor eficiencia de enfriamiento del etano y para evitar el hielo no vítreo.
5. Control de calidad de las redes
6. Recopilación de datos
La descripción general de bajo aumento se muestra en la Figura 5A,B. El panel A es un ejemplo de una cuadrícula exitosa. Hay un gradiente de hielo desde la parte superior izquierda (más gruesa) hasta la parte inferior derecha (más delgada o vacía). Dicha cuadrícula hace que sea más fácil encontrar un espesor apropiado de la capa de hielo en el área media adecuada para la recopilación de datos, como las cajas azul y verde. La rejilla B está demasiado seca. Los cuad...
En el paso 1 del protocolo, asegúrese de que el tubo de centrífuga se haya instalado bien y no se caiga cuando el experimento esté en curso. Debido a la acumulación de una gran cantidad de gotas de agua en la cámara, lo que podría cambiar la capacidad de adsorción del papel de filtro, se recomienda que el tiempo total del experimento no exceda los 30 minutos después de que la cámara del aparato de vitrificación haya alcanzado la temperatura de equilibrio. Si el tiempo de operación excede los 30 minutos, el ope...
Los autores declaran que no hay intereses financieros contrapuestos.
Los autores agradecen al Dr. Hervé Remigy de Thermo Fisher Scientific sus útiles consejos. Los experimentos crio-EM se realizaron en la Academia Sinica Cryo-EM Facility (ASCEM). ASCEM cuenta con el apoyo de la Academia Sínica (Subvención No. AS-CFII-108-110) y Taiwan Protein Project (subvención No. AS-KPQ-109-TPP2). Los autores también agradecen a la Sra. Hui-Ju Huang por la ayuda con la preparación de la muestra.
Name | Company | Catalog Number | Comments |
Falcon tube | Falcon | 352070 | size: 50 mL |
Filter paper | Ted Pella | 47000-100 | Ø55/20mm, Grade 595 |
HI1210 | Leica | water bath | |
K100X | Electron Microscopy Sciences | glow discharge | |
Quantifoil, 1.2/1.3 200Mesh Cu grid | Ted Pella | 658-200-CU-100 | |
Titan Krios G3 | Thermo Fisher Scientific | 1063996 | low dose imaging |
Vitrobot Mark IV | Thermo Fisher Scientific | 1086439 | |
Vitrobot Tweezer | Ted Pella | 47000-500 |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados