Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
The exploration of cellular behavior under mechanical stress is pivotal for advances in cellular mechanics and mechanobiology. We introduce the Fluorescence Micropipette Aspiration (fMPA) technique, a novel method combining controlled mechanical stimulation with comprehensive analysis of intracellular signaling in single cells. This technique investigates new in-depth studies of live-cell mechanobiology.
Micropipette aspiration assays have long been a cornerstone for the investigation of live-cell mechanics, offering insights into cellular responses to mechanical stress. This paper details an innovative adaptation of the fluorescence-coupled micropipette aspiration (fMPA) assay. The fMPA assay introduces the capability to administer precise mechanical forces while concurrently monitoring the live-cell mechanotransduction processes mediated by ion channels. The sophisticated setup incorporates a precision-engineered borosilicate glass micropipette connected to a finely regulated water reservoir and pneumatic aspiration system, facilitating controlled pressure application with increments as refined as ± 1 mmHg. A significant enhancement is the integration of epi-fluorescence imaging, allowing for the simultaneous observation and quantification of cell morphological changes and intracellular calcium fluxes during aspiration. The fMPA assay, through its synergistic combination of epi-fluorescence imaging with micropipette aspiration, sets a new standard for the study of cell mechanosensing within mechanically challenging environments. This multifaceted approach is adaptable to various experimental setups, providing critical insights into the single-cell mechanosensing mechanisms.
The unfolding discoveries in the world of cellular behaviors have accentuated the role of mechanical stimuli, such as tension, fluid shear stress, compression, and substrate stiffness, in dictating dynamic cellular activities such as adhesion, migration, and differentiation. These mechanobiological aspects are of paramount importance in elucidating how cells interact with and respond to their physiological environments, impacting various biological processes1,2.
Over the past decade, micropipette-based aspiration assays have stood out as a versatile tool in studying diverse cellular....
This protocol follows the guidelines of and has been approved by the Human Research Ethics Committee of the University of Sydney. Informed consent was obtained from the donors for this study.
1. Human RBC isolation
NOTE: Step 1.1 should be performed by a trained phlebotomist using a protocol that has been approved by the Institutional Review Board.
To establish micropipette aspiration assays, we first constructed a custom cell chamber comprising two metal squares (copper/aluminum) connected by a handle. Two third-cut glass coverslips (40 mm × 7 mm × 0.17 mm) were affixed to create a chamber filled with 200 µL of RBCs suspended in Tyrode's Buffer. After introducing RBCs into the chamber, a tailored borosilicate micropipette was secured on a holder and carefully positioned within the chamber using a micro-manipulator. Subsequently, the micropipette.......
Micropipette aspiration assays embody a refined methodology, deploying substantial pressure modulation, exact spatial orchestration, and reliable temporal discernment to probe the profound intricacies of cellular biomechanics. This study places particular emphasis on the application of fMPA as a crucial tool for unveiling the nuanced mechanosensitive responses showcased by RBCs under varying stimuli. The concurrent use of brightfield and fluorescence signals enabled a multifaceted exploration of cellular phenomena, advan.......
We thank Nurul Aisha Zainal Abidin and Laura Moldovan for additional donor recruitment, blood collection, and phlebotomy support. We thank Tomas Anderson and Arian Nasser for organizing the equipment and reagents. This research was funded by the Australian Research Council (ARC) Discovery Project (DP200101970-L.A.J.); the National Health and Medical Research Council (NHMRC) of Australia Ideas Grant (APP2003904-L.A.J.); NHMRC Equipment Grant-L.A.J.; NSW Cardiovascular Capacity Building Program (Early-Mid Career Researcher Grant-L.A.J.); NSW CVRN-VCCRI Research Innovation Grant; Office of Global and Research Engagement (Sydney-Glasgow Partnership Collaboration Award-L.A....
Name | Company | Catalog Number | Comments |
µManager | Micro-Manager | Version 2.0.0 | |
1 mL Syringe | Terumo | 210320D | Cooperate with the Microfil |
200 µL Pipette | Eppendorf | 3123000055 | Red clood cell preparation |
22 x 40 mm Cover Slips | Knittel Glass | MS0014 | Cell chamber assembly |
50 mL Syringe | Terumo | 220617E | Connect to the water tower |
Calcium Chloride (CaCl2) | Sigma-Aldrich | C1016 | Tryode's buffer preparation - 12 mM NaHCO3, 10 mM HEPES, 0.137 M NaCl, 2.7 mM KCl, and 5.5 mM D-glucose supplemented with 1 mM CaCl2. Final pH = 7.2 |
Centrifuge 5425 | Eppendorf | 5405000280 | Red clood cell preparation |
Clexane | Sigma-Aldrich | 1235820 | To prevent clotting of the collected blood. 10,000 U/mL |
DAQami | Diligent | ||
Fluorescence light source | CoolLED | pE-300 | Micropipette aspiration hardware system |
Glass capillary | Narishige | G-1 | Micropipette manufacture |
Glucose | Sigma-Aldrich | G8270 | Tryode's buffer preparation - 12 mM NaHCO3, 10 mM HEPES, 0.137 M NaCl, 2.7 mM KCl, and 5.5 mM D-glucose supplemented with 1 mM CaCl2. Final pH = 7.2 |
Hepes | Thermo Fisher | 15630080 | Tryode's buffer preparation - 12 mM NaHCO3, 10 mM HEPES, 0.137 M NaCl, 2.7 mM KCl, and 5.5 mM D-glucose supplemented with 1 mM CaCl2. Final pH = 7.2 |
High speed GigE camera | Manta | G-040B | Micropipette aspiration hardware system |
High speed pressure clamp | Scientific Instrument | HSPC-2-SB | Cooperate with the pressure pump |
High speed pressure clamp head stage | Scientific Instrument | HSPC-2-SB | Cooperate with the pressure pump |
Imaris | Oxford Instruments | ||
Inverted Microscopy | Olympus | Olympus IX83 | Micropipette aspiration hardware system |
Microfil | World Precision Instruments | MF34G-5 | 34 G (67 mm Long) Revome air bubble in the cut micropipette and test the opening of the pipette tip |
Micropipette Puller | Sutter instrument | P1000 | Micropipette manufacture |
Milli Q EQ 7000 Ultrapure Water Purification System | Merck Millipore | ZEQ7000T0C | Carbonate/bicarbonate buffer & Tryode's buffer preparation |
Pipette microforge | Narishige | MF-900 | Micropipette manufacture |
Potassium Chloride (KCl) | Sigma-Aldrich | P9541 | Tryode's buffer preparation - 12 mM NaHCO3, 10 mM HEPES, 0.137 M NaCl, 2.7 mM KCl, and 5.5 mM D-glucose supplemented with 1 mM CaCl2. Final pH = 7.2 |
Pressue Pump | Scientific Instrument | PV-PUMP | Induce controlled pressure during experiment |
Prime 95B Camera | Photometrics | Prime 95B sCMOS | Flourscent imaging |
Rotary wheel remote unit | Sensapex | uM-RM3 | Control panel for micropipette position adjustment |
Scepter 3.0 Handheld Cell Counter | Merck Millipore | PHCC340KIT | Automatic cell counter |
Sodium Bicarbonate (NaHCO3) | Sigma-Aldrich | S5761 | Carbonate/bicarbonate buffer preparation - 2.65 g of NaHCO3 with 2.1 g of Na2CO3 in 250 mL of Mili Q water - Final pH = 8-9. |
Sodium Carbonate (Na2CO3) | Sigma-Aldrich | S2127 | Carbonate/bicarbonate buffer preparation - 2.65 g of NaHCO3 with 2.1 g of Na2CO3 in 250 mL of Mili Q water - Final pH = 8-9. |
Sodium Chloride (NaCl) | Sigma-Aldrich | S7653 | Tryode's buffer preparation - 12 mM NaHCO3, 10 mM HEPES, 0.137 M NaCl, 2.7 mM KCl, and 5.5 mM D-glucose supplemented with 1 mM CaCl2. Final pH = 7.2 |
Sodium Phosphate Monobasic Monohydrate (NaH2PO4 • H2O) | Sigma-Aldrich | S9638 | Tryode's buffer preparation - 12 mM NaHCO3, 10 mM HEPES, 0.137 M NaCl, 2.7 mM KCl, and 5.5 mM D-glucose supplemented with 1 mM CaCl2. Final pH = 7.2 |
Touch screen control unit | Sensapex | uM-TSC | Control panel for micropipette position adjustment |
X dry Objective | Olympus | Olympus 60x/0.70 LUCPlanFL | Micropipette aspiration hardware system |
This article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados