Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
This article describes a protocol for creating a microfluidic vagina-on-a-chip (Vagina Chip) culture device that enables the study of human host interactions with a living vaginal microbiome under microaerophilic conditions. This chip can be used as a tool to investigate vaginal diseases as well as to develop and test potential therapeutic countermeasures.
Women's health, and particularly diseases of the female reproductive tract (FRT), have not received the attention they deserve, even though an unhealthy reproductive system may lead to life-threatening diseases, infertility, or adverse outcomes during pregnancy. One barrier in the field is that there has been a dearth of preclinical, experimental models that faithfully mimic the physiology and pathophysiology of the FRT. Current in vitro and animal models do not fully recapitulate the hormonal changes, microaerobic conditions, and interactions with the vaginal microbiome. The advent of Organ-on-a-Chip (Organ Chip) microfluidic culture technology that can mimic tissue-tissue interfaces, vascular perfusion, interstitial fluid flows, and the physical microenvironment of a major subunit of human organs can potentially serve as a solution to this problem. Recently, a human Vagina Chip that supports co-culture of human vaginal microbial consortia with primary human vaginal epithelium that is also interfaced with vaginal stroma and experiences dynamic fluid flow has been developed. This chip replicates the physiological responses of the human vagina to healthy and dysbiotic microbiomes. A detailed protocol for creating human Vagina Chips has been described in this article.
A vaginal microbiome dominated by Lactobacillus spp. that helps to maintain an acidic microenvironment plays an important role in maintaining female reproductive health1. However, at times there can be a change in the composition of microbial communities that comprise the microbiome, which results in an increase in the diversity of vaginal bacteria. These dysbiotic changes, which often result in a switch from a Lactobacillus-dominated state to one dominated by more diverse anaerobic bacterial species (e.g., Gardnerella vaginalis), are associated with various diseases of the reproductive system, such as bacterial ....
This research was performed in compliance with institutional guidelines for the use of human cells. The cells were obtained commercially (see Table of Materials). All steps should be performed aseptically in a biosafety cabinet (BSC). Use only filter (or barrier) pipette tips for this protocol.
1. Culturing human vaginal epithelial cells
The human vagina is lined by a stratified epithelium that overlies a fibroblast-rich collagenous stroma. To model this, a tissue interface was created by culturing primary human vaginal epithelium and fibroblasts on opposite sides of a common porous membrane within a two-channel microfluidic Organ Chip device. Formation of the vaginal epithelium is monitored using bright field microscopic imaging, which reveals the formation of a continuous sheet of cells that progressively forms multiple cell layers (
Past in vitro models of the human vagina do not faithfully replicate vaginal tissue structures, fluid flow, and host-pathogen interactions19,22. Animal models are also limited by inter-species variation in microbiome and differences in the estrous or menstrual cycle19,22. This manuscript describes a protocol to create an Organ Chip model of the human vagina that can effectively mimic human respon.......
This research was sponsored by funding from the Bill and Melinda Gates Foundation (INV-035977) and the Wyss Institute for Biologically Inspired Engineering at Harvard University. We also thank Gwenn E. Merry, Wyss Institute, for editing this manuscript. The diagram in Figure 1 has been created with BioRender.
....Name | Company | Catalog Number | Comments |
0.22 µm Steriflip | Millipore | SCGP00525 | To degas media |
2 channel chip | Emulate | BRK-S1-WER-24 | Part of the two-channel Chip kit |
200 μL barrier tips (or filter tips) | Thomas Scientific, SHARP | 1159M40 | Tips used for chip seeding |
Activation Reagent 1 (or ER-1 powder) | Emulate | Chip S1 Basic Research kit-24PK | Part of the two-channel Chip kit; Storage temperature -20 °C |
Activation Reagent 2 (or ER-2 solution) | Emulate | Chip S1 Basic Research kit-24PK | Part of the two-channel Chip kit; Storage temperature 4 °C |
Adenine | Sigma Aldrich | A2786 | Component of the Differentiation media |
Brucella blood agar plates | VWR International Inc. | 89405-032 | with Hemin and Vitamin K; For the enumeration of Gardnerella vaginalis |
Ca2+ and Mg2+ free DPBS (DPBS (-/-) | ScienCell | 303 | For washing cells |
Calcium Chloride | Sigma Aldrich | C5670 | Component of the Differentiation media |
Calcium chloride (anhyd.) | Sigma Aldrich | 499609 | Component of HBSS (LB/+G) |
Collagen I | Corning | 354236 | For the coating solution for HVEC |
Collagen IV | Sigma Aldrich | C7521 | For the coating solution for HVEC |
Collagenase IV | Gibco | 17104019 | For the dissociation of cells from the Vagina Chips |
Complete fibroblast medium | ScienCell | 2301 | Media for the culture of HUF |
Complete vaginal epithelium medium | Lifeline | LL-0068 | Media for the culture of HVEC |
D-Glucose (dextrose) | Sigma Aldrich | 158968 | Component of HBSS (LB/+G) |
DMEM (Low Glucose) | Thermofisher | 12320-032 | Component of the Differentiation media |
Dynamic Flow Module (or Zoë) | Emulate | Zoë-CM1 | Regulates the flow rate of the chips |
Ham's F12 | Thermofisher | 11765-054 | Component of the Differentiation media |
Heat inactivated FBS | Thermofisher | 10438018 | Component of the Differentiation media |
Human uterine fibroblasts | ScienCell | 7040 | HUF |
Human vaginal epithelial cells | Lifeline | FC-0083 | HVEC |
Hydrocortisone | Sigma Aldrich | H0396 | Component of the Differentiation media |
ITES | Lonza | 17-839Z | Component of the Differentiation media |
L-glutamine | Thermofisher | 25030081 | Component of the Differentiation media |
Magnesium chloride hexahydrate | Sigma Aldrich | M2393 | Component of HBSS (LB/+G) |
Magnesium sulfate heptahydrate | Sigma Aldrich | M1880 | Component of HBSS (LB/+G) |
MRS agar plates | VWR International Inc. | 89407-214 | For enumeration of Lactobacillus |
O-phosphorylethanolamine | Sigma Aldrich | P0503 | Component of the Differentiation media |
Pen/Strep | Thermofisher | 15070063 | Component of the Differentiation media |
pH strips | Fischer-Scientific | 13-640-520 | For measurement of pH |
Pods (1/chip) | Emulate | BRK-S1-WER-24 | Part of the two-channel Chip kit |
Poly-L-lysine | ScienCell | 403 | For the coating solution for HUFs |
Potassium chloride | Sigma Aldrich | P3911 | Component of HBSS (LB/+G) |
Potassium phosphate monobasic | Sigma Aldrich | P0662 | Component of HBSS (LB/+G) |
Sterile 80% glycerol | MP Biomedicals | 113055034 | For freezing bacterial samples |
Triiodothyronine | Sigma Aldrich | T6397 | Component of the Differentiation media |
Trypan Blue Solution (0.4%) | Sigma Aldrich | T8154 | For counting live/dead cells |
TrypLE Express | Thermofisher | 12605010 | For the dissociation of cells from the Vagina Chips |
Trypsin Neutralizing Solution (TNS) | ScienCell | 113 | For neutralization of Trypsin |
Trypsin/EDTA Solutiom (0.25%) | ScienCell | 103 | For cell dissociation |
β-estradiol | Sigma Aldrich | E2257 | Hormone for differentiation media |
This article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados