S'identifier

Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.

Dans cet article

  • Résumé
  • Résumé
  • Introduction
  • Protocole
  • Résultats Représentatifs
  • Discussion
  • Déclarations de divulgation
  • Remerciements
  • matériels
  • Références
  • Réimpressions et Autorisations

Résumé

Cet article décrit un protocole de création d’un dispositif de culture microfluidique de vagin sur puce (Vagina Chip) qui permet d’étudier les interactions de l’hôte humain avec un microbiome vaginal vivant dans des conditions microaérophiles. Cette puce peut être utilisée comme outil pour étudier les maladies vaginales ainsi que pour développer et tester des contre-mesures thérapeutiques potentielles.

Résumé

La santé des femmes, et en particulier les maladies de l’appareil reproducteur féminin, n’a pas reçu l’attention qu’elle mérite, même si un système reproducteur malsain peut entraîner des maladies potentiellement mortelles, l’infertilité ou des résultats défavorables pendant la grossesse. L’un des obstacles dans le domaine est qu’il y a eu une pénurie de modèles précliniques et expérimentaux qui imitent fidèlement la physiologie et la physiopathologie de la TRF. Les modèles in vitro et animaux actuels ne récapitulent pas entièrement les changements hormonaux, les conditions microaérobies et les interactions avec le microbiome vaginal. L’avènement de la technologie de culture microfluidique Organ-on-a-Chip (Organ Chip) qui peut imiter les interfaces tissu-tissu, la perfusion vasculaire, les flux de liquide interstitiel et le microenvironnement physique d’une sous-unité majeure d’organes humains peut potentiellement servir de solution à ce problème. Récemment, une puce vaginale humaine qui soutient la co-culture de consortiums microbiens vaginaux humains avec un épithélium vaginal humain primaire qui est également interfacé avec le stroma vaginal et connaît un flux de fluide dynamique a été développée. Cette puce reproduit les réponses physiologiques du vagin humain aux microbiomes sains et dysbiotiques. Un protocole détaillé pour la création de puces vaginales humaines a été décrit dans cet article.

Introduction

Un microbiome vaginal dominé par Lactobacillus spp. qui aide à maintenir un microenvironnement acide joue un rôle important dans le maintien de la santé reproductive féminine1. Cependant, il peut parfois y avoir un changement dans la composition des communautés microbiennes qui composent le microbiome, ce qui entraîne une augmentation de la diversité des bactéries vaginales. Ces changements dysbiotiques, qui entraînent souvent le passage d’un état dominé par les Lactobacillus à un état dominé par des espèces bactériennes anaérobies plus diversifiées (par exemple, Gardnerella vaginalis), sont associés à diverses maladi....

Protocole

Cette recherche a été réalisée dans le respect des directives institutionnelles pour l’utilisation de cellules humaines. Les cellules ont été obtenues commercialement (voir Tableau des matériaux). Toutes les étapes doivent être effectuées de manière aseptique dans une enceinte de biosécurité (ESB). Utilisez uniquement des pointes de pipette à filtre (ou à barrière) pour ce protocole.

1. Culture de cellules épithéliales vaginales humaines

  1. Chauffer 50 mL de milieu épithélial vaginal (VEM, voir le tableau des matières) à 37 °C.
  2. Aliquote de 9 mL de VEM dans un tube de 15 mL.....

Résultats Représentatifs

Le vagin humain est tapissé d’un épithélium stratifié qui recouvre un stroma collagène riche en fibroblastes. Pour modéliser cela, une interface tissulaire a été créée en cultivant de l’épithélium vaginal humain primaire et des fibroblastes sur les côtés opposés d’une membrane poreuse commune au sein d’un dispositif de puce d’organe microfluidique à deux canaux. La formation de l’épithélium vaginal est surveillée à l’aide d’une imagerie microscopique à champ clair, qui révèle la for.......

Discussion

Les modèles in vitro antérieurs du vagin humain ne reproduisent pas fidèlement les structures des tissus vaginaux, le flux de fluides et les interactions hôte-pathogène19,22. Les modèles animaux sont également limités par les variations inter-espèces du microbiome et les différences dans le cycle œstral ou menstruel19,22. Ce manuscrit décrit un protocole permettant de créer un modèl.......

Déclarations de divulgation

Donald Ingber est fondateur, membre du conseil d’administration, président du conseil consultatif scientifique et actionnaire d’Emulate. Les autres auteurs déclarent qu’ils n’ont pas d’intérêts concurrents.

Remerciements

Cette recherche a été financée par la Fondation Bill et Melinda Gates (INV-035977) et le Wyss Institute for Biologically Inspired Engineering de l’Université Harvard. Nous remercions également Gwenn E. Merry, de l’Institut Wyss, pour l’édition de ce manuscrit. Le diagramme de la figure 1 a été créé avec BioRender.

....

matériels

NameCompanyCatalog NumberComments
0.22 µm SteriflipMillipore SCGP00525To degas media
2 channel chipEmulateBRK-S1-WER-24Part of the two-channel Chip kit
200 μL barrier tips (or filter tips)Thomas Scientific, SHARP1159M40Tips used for chip seeding
Activation Reagent 1 (or ER-1 powder) EmulateChip S1 Basic Research kit-24PKPart of the two-channel Chip kit; Storage temperature -20 °C  
Activation Reagent 2 (or ER-2 solution) EmulateChip S1 Basic Research kit-24PKPart of the two-channel Chip kit; Storage temperature 4 °C
AdenineSigma Aldrich A2786Component of the Differentiation media
Brucella blood agar platesVWR International Inc. 89405-032with Hemin and Vitamin K; For the enumeration of Gardnerella vaginalis
Ca2+ and Mg2+ free DPBS (DPBS (-/-)ScienCell303For washing cells
Calcium ChlorideSigma Aldrich C5670Component of the Differentiation media
Calcium chloride (anhyd.) Sigma Aldrich 499609Component of HBSS (LB/+G)
Collagen I Corning354236For the coating solution for HVEC
Collagen IV Sigma Aldrich C7521For the coating solution for HVEC
Collagenase IVGibco17104019For the dissociation of cells from the Vagina Chips
Complete fibroblast medium ScienCell2301Media for the culture of HUF
Complete vaginal epithelium mediumLifelineLL-0068Media for the culture of HVEC
D-Glucose (dextrose) Sigma Aldrich 158968Component of HBSS (LB/+G)
DMEM (Low Glucose) Thermofisher12320-032Component of the Differentiation media
Dynamic Flow Module (or Zoë)EmulateZoë-CM1Regulates the flow rate of the chips
Ham's F12Thermofisher11765-054Component of the Differentiation media
Heat inactivated FBS Thermofisher 10438018Component of the Differentiation media
Human uterine fibroblastsScienCell7040HUF
Human vaginal epithelial cellsLifelineFC-0083HVEC
HydrocortisoneSigma Aldrich H0396Component of the Differentiation media
ITESLonza17-839ZComponent of the Differentiation media
L-glutamineThermofisher25030081Component of the Differentiation media
Magnesium chloride hexahydrateSigma Aldrich M2393Component of HBSS (LB/+G)
Magnesium sulfate heptahydrateSigma Aldrich M1880Component of HBSS (LB/+G)
MRS agar platesVWR International Inc. 89407-214For enumeration of Lactobacillus
O-phosphorylethanolamineSigma Aldrich P0503Component of the Differentiation media
Pen/StrepThermofisher 15070063Component of the Differentiation media
pH stripsFischer-Scientific13-640-520For measurement of pH 
Pods (1/chip) EmulateBRK-S1-WER-24Part of the two-channel Chip kit
Poly-L-lysineScienCell403For the coating solution for HUFs
Potassium chloride Sigma Aldrich P3911Component of HBSS (LB/+G)
Potassium phosphate monobasicSigma Aldrich P0662Component of HBSS (LB/+G)
Sterile 80% glycerol MP Biomedicals 113055034For freezing bacterial samples
TriiodothyronineSigma Aldrich  T6397Component of the Differentiation media
Trypan Blue Solution (0.4%) Sigma Aldrich T8154For counting live/dead cells
TrypLE ExpressThermofisher 12605010For the dissociation of cells from the Vagina Chips
Trypsin Neutralizing Solution (TNS) ScienCell113For neutralization of Trypsin
Trypsin/EDTA Solutiom (0.25%)ScienCell103For cell dissociation 
β-estradiol Sigma Aldrich E2257Hormone for differentiation media

Références

  1. Smith, S. B., Ravel, J. The vaginal microbiota, host defence and reproductive physiology. J Physiol. 595 (2), 451-463 (2017).
  2. Van De Wijgert, J., Jespers, V. The global health impact of vaginal dysbiosis. Re....

Réimpressions et Autorisations

Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE

Demande d’autorisation

Explorer plus d’articles

Ce mois ci dans JoVEnum ro 204

This article has been published

Video Coming Soon

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.