Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We present a protocol for preparing synthetic biomolecular condensates consisting of amphiphilic DNA nanostars starting from their constituent DNA oligonucleotides. Condensates are produced from either a single nanostar component or two components and are modified to sustain in vitro transcription of RNA from an embedded DNA template.

Abstract

Synthetic droplets and condensates are becoming increasingly common constituents of advanced biomimetic systems and synthetic cells, where they can be used to establish compartmentalization and sustain life-like responses. Synthetic DNA nanostructures have demonstrated significant potential as condensate-forming building blocks owing to their programmable shape, chemical functionalization, and self-assembly behavior. We have recently demonstrated that amphiphilic DNA "nanostars", obtained by labeling DNA junctions with hydrophobic moieties, constitute a particularly robust and versatile solution. The resulting amphiphilic DNA condensates can be programmed to display complex, multi-compartment internal architectures, structurally respond to various external stimuli, synthesize macromolecules, capture and release payloads, undergo morphological transformations, and interact with live cells. Here, we demonstrate protocols for preparing amphiphilic DNA condensates starting from constituent DNA oligonucleotides. We will address (i) single-component systems forming uniform condensates, (ii) two-component systems forming core-shell condensates, and (iii) systems in which the condensates are modified to support in vitro transcription of RNA nanostructures.

Introduction

Synthetic cells are micrometer-scale (10-50 µm) devices constructed from the bottom-up to replicate functions and structures of extant biological cells1,2. Synthetic cells are often bound by membranes constructed from lipid bilayer vesicles3,4,5,6,7, polymersomes8,9, or proteinosomes10,11, which can also be....

Protocol

NOTE: The protocol is divided into three sections. Section 1 describes the prerequisite steps, including the preparation of DNA oligonucleotides and glass capillaries. Section 2 describes the preparation of C-star condensates of various designs, including one- and two-component designs, and their extraction from the glass capillaries. Section 3 describes the use of one-component RNA templating C-star condensates for the synthesis of an RNA aptamer. The user must follow good lab practice throughout, ensure that all necess.......

Representative Results

After annealing, C-star condensates can be imaged directly in the capillary tube, or after extraction, to confirm their formation. For all C-star design variations, one should observe distinct spherical or polyhedral condensates approximately 10-50 µm in diameter, the latter forming when crystallization occurs28,32. For single-component condensates, the condensates should be discrete and uniform in appearance, and may appear polyhedral (.......

Discussion

The protocol described here provides an approach for the preparation of one- or two- component condensates from amphiphilic DNA nanostars, with design variations to introduce different responses into the condensates. The given protocol produces condensates in a buffer solution of 0.3 M NaCl in TE, but the buffer conditions can be amended by appropriately modifying the volumes listed above. Previous work has studied the formation of C-star condensates in 0.2 M NaCl in TE and 0.1 M NaCl in TE and in phosphate-buffered sali.......

Acknowledgements

LM, LDM, and DT acknowledge support from the European Research Council (ERC) under the Horizon 2020 Research and Innovation Programme (ERC-STG No 851667 - NANOCELL). LDM acknowledges support from a Royal Society Research Grant for Research Fellows (RGF/R1/180043) and support from a Royal Society University Research Fellowship (UF160152, URF/R/221009).

....

Materials

NameCompanyCatalog NumberComments
0.22 μm syringe filtersSigma-AldrichSLGVR33RB
24 x 60 mm #1.5 Rectangular cover glasses, Menzel GläserVWR631-0853
2-PropanolSigma-Aldrich34683
6 L Ultrasonic Cleaner with Digital Timer and Heat, 230 VACCole-ParmerWZ-08895-11
Araldite Rapid Adhesive 2 Part Epoxy GlueRSARA-400005
Bio-Rad C1000 thermal cyclerBio-Rad1851197
Brand Microcentrifuge Tube 2 mL with Locking LidFisher Scientific153386652 mL microcentrifuge tubes for the extraction of C-star condensates
Diamond Scribing PenRS394-217
Difluoro-4-hydroxybenzylidene imidazolidinone (DFHBI)Sigma-AldrichSML1627
Dimethyl sulfoxide (DMSO)Sigma-Aldrich472301
Eppendorf PCR Clean Colorless Safe-Lock Centrifuge TubesFisher Scientific00301233010.5 mL microcentrifuge tubes for the preparation of C-star mixtures
Ethanol Absolute 99.8+%Fisher Scientific1043734170% ethanol is sufficient for cleaning purposes
Fisherbrand ZX4 IR Vortex MixerFisherbrand13284769
Hellmanex IIIHellma9-307-011-4-507
Hollow Rectangle Capillaries ID 0.40 x 4.00 mm, 50 mm in lengthCM Scientific2540-50
Mineral oilSigma-Aldrich69794
Mini Centrifuge, 230 VPRISM(TM)Z763128
NaClSigma-AldrichS3014
NanoDrop One SpectrophotometerThermo Fisher ScientificND-ONE-WUsed to measure absorbance of oligonucleotides for concentration calculations
OligonucleotidesIntegrated DNA TechnologiesCustomOligonucleotide sequences are unique to the C-star design required.
ScriptGuard RNase inhibitorCELLSCRIPTC-SRI6310KRNase inhibitor
T7-FlashScribe Transcription KitCambioC-ASF3507
Tris-EDTA buffer, 100x stock solutionSigma-Aldrich574793
UltraPure DNase/RNase-Free Distilled WaterInvitrogen10977035
VWR Spec-Wipe 3 WipersVWR21914-758

References

  1. Buddingh', B. C., Hest, J. C. M. v. Artificial cells: Synthetic compartments with life-like functionality and adaptivity. Acc Chem Res. 50 (4), 769-777 (2017).
  2. Fanalista, F., et al. Shape and size contro....

Explore More Articles

Synthetic CondensatesCell like ArchitecturesAmphiphilic DNA NanostructuresDNA JunctionsHydrophobic MoietiesMulti compartment Internal ArchitecturesExternal StimuliMacromolecule SynthesisPayload Capture And ReleaseMorphological TransformationsIn Vitro TranscriptionRNA Nanostructures

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados