Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
* Ces auteurs ont contribué à parts égales
A method is presented to measure microcirculatory blood flow velocity in pulmonary cancer metastases of the pleural surface in rats in an automated fashion, using closed-chest pulmonary intravital microscopy. This model has potential to be used as a widespread tool to perform physiologic research on pulmonary metastases in rodents.
Because the lung is a major target organ of metastatic disease, animal models to study the physiology of pulmonary metastases are of great importance. However, very few methods exist to date to investigate lung metastases in a dynamic fashion at the microcirculatory level, due to the difficulty to access the lung with a microscope. Here, an intravital microscopy method is presented to functionally image and quantify the microcirculation of superficial pulmonary metastases in rats, using a closed-chest pulmonary window and automated analysis of blood flow velocity and direction. The utility of this method is demonstrated to measure increases in blood flow velocity in response to pharmacological intervention, and to image the well-known tortuous vasculature of solid tumors. This is the first demonstration of intravital microscopy on pulmonary metastases in a closed-chest model. Because of its minimized invasiveness, as well as due to its relative ease and practicality, this technology has the potential to experience widespread use in laboratories that specialize on pulmonary tumor research.
The lung is one of the most important target organs of metastatic disease, and because this condition is difficult to treat successfully with chemo- and radiation therapy, a cure is still rare1,2. Specific pathophysiological and microcirculatory features of solid primary and metastatic tumors, such as microregional hypoxia, diffusion limitation and inefficient tumor vasculature, greatly contribute to their resistance to anticancer treatment3,4. Due to the microscopic scale and dynamic nature of parameters such as microvascular blood flow, intravital microscopy of the tumor in the living animal has become a very important research tool in the field5. While intravital microscopy models have been applied to tumors in different organ sites, including the metastatic lung within an open rib cage, no protocol has been developed yet for the research of pulmonary metastases in a physiologically preserving, closed-chest environment6,7. Such an endeavor is particularly hampered by the necessity to surgically access the rib cage without affecting the overall function of the lung7-9. Recently, a method was introduced to image pulmonary microcirculatory blood flow in a close-chest setting in live rats, using fluorescence intravital microscopy10. This protocol enables the systematic quantification of blood flow velocity from injected, fluorescently labeled red blood cells, using computerized analysis, while keeping the animal physiologically stable and preserving the integrity of the lung11. In this present study, it is shown how this technology can be modified to image and quantify microcirculatory blood flow in tail vein-inoculated pulmonary metastases on the pleural surface in the immunocompromised rat. This model is also the first one to study metastatic lung tumors in a closed-chest intravital microscopy setting.
NOTE: Toutes les procédures liées aux animaux décrits dans le présent protocole ont été préalablement approuvé par le soin et l'utilisation institutionnelle animaux Comité Duke University (DUIACUC).
1. Culture cellulaire et cancer Injection
2. Suivi des métastases Utilisation microCT
Chirurgie 3. Chambre Fenêtre
4. imagerie et mesure du débit sanguin Microcirculatory
La vascularisation dans les tumeurs solides est connu pour différer considérablement de l'approvisionnement en sang normale, montrant de plus grands degrés de tortuosité et les distances intervasculaires plus élevés 13. En conséquence, les pistes de la circulation sanguine dans le cancer du sein et de métastases pulmonaires sarcome expérimentales ont des formes irrégulières et de grandes lacunes intervasculaires (figure 2A, deux panneaux inférieurs) par rapport à la microcirc...
On présente un modèle qui est possible à l'évolution de l'image dans le débit sanguin microcirculatoire et d'autres processus dynamiques dans des métastases pulmonaires de rat, en utilisant la microscopie intravitale et l'analyse de la circulation sanguine calcul. Alors que d'autres méthodes existent pour effectuer la microscopie sur les poumons exposés en cages thoraciques ouvertes de rongeurs, ce modèle est également le premier à l'image des métastases pulmonaires par une perforatio...
Les auteurs ne ont rien à divulguer.
The scientific advice of Drs. Timothy McMahon and Siqing Shan is appreciated. The presenters thank Drs. David Kirsch and Patricia Steeg for the generous gift of the fluorescently labeled Mouse Sarcoma and metastatic MDAMB-231 cells, respectively. This work was funded in part by the U.S. Defense Advanced Research Projects Agency (DARPA) Prime Award Number N66001-10-C-2134, and in part by the Department of Radiation Oncology, Duke University Medical Center.
Name | Company | Catalog Number | Comments |
Athymic nude rats | Charles River | Strain code 316 | Female 10 week-old athymic nude rats |
micro-CT/micro-Irradiator | Precision X-ray Inc. | Xrad 225Cx | Use MicroCT to detect metastases |
DiI (1,1=-dioctadecyl-3,3,3=,3=-tetramethyl-indocarbocyanine perchlorate) | Sigma Aldrich | 468495-100MG | Mix 100 ul packed red blood cells with 100 ul of 0.5 mg/ml DiI in 200 proof ethanol, 2 ml of 5% dextrose solution in water, and fill up to a 10-ml final volume with saline |
Rodent ventilator | Kent Scientific | TOPO Small Animal Ventilator | Device is important to maintain positive lung pressure after application of pneumothorax |
Zeiss Axioskop fluorescence microscope upright | Zeiss | Axioskop | Microscope for intravital imaging |
Andor CCD camera | Andor | iXonEM 885 | CCD camera for live imaging of blood flow |
Pulse oximeter | StarrLife | MouseOx | Pulse oximeter |
Fluorescence microscope | Zeiss | Axioskop | Fluorescence microscope |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon