JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

このプロトコルでは、定量的かつ包括的に複数の栄養源の代謝を調査する実験手順について説明します。このワークフローは、同位体トレーサー実験と分析手順の組み合わせに基づいて決定する微生物による消費された栄養素の運命と分子 synthetized の代謝の起源をことができます。

要約

微生物学の分野の研究は、幅広い方法論の実装に依存します。特に、適切なメソッドの開発は大幅にユニークな窒素と炭素源を含む化学的に定義されているメディアに成長している微生物の代謝の広範な知識を提供することに貢献しています。対照的に、自然や産業の環境の彼らの広範な存在にもかかわらず、複数の栄養源の代謝を通して管理ほぼ未踏のままです。このような状況は、調査を妨げる適切な方法論の不足のために主にです。

定量的かつ包括的には、異なる分子、すなわち、複雑なリソースの混合物として、栄養が提供されるときの代謝の動作を調べる実験方法を報告する.ここでは、酵母の代謝ネットワークを介して複数の窒素源の分割の評価への応用について述べる。ワークフローは、選択された13c や15N 標識基板を用いた安定同位体トレーサー実験時に得られた情報を組み合わせたものです。それは最初の N を含む分子の混合物が含まれています同じ媒体で並列で再現可能な発酵に成っています。ただし、選択した窒素源は、各時間が付いています。分析的手続 (HPLC、GC-MS) の組み合わせを実装するは、ターゲット化合物のラベリング パターンを評価し、消費および他の代謝産物の基板の回収を定量化します。完全なデータセットの統合的解析は、細胞内で消費された基板の運命の概要を説明します。このアプローチが発酵のオンライン監視用ロボット支援システムによるサンプル-容易のコレクションの正確なプロトコルを必要とする- と多くの時間がかかる解析の成果。これらの制約にもかかわらず、それは酵母の代謝ネットワーク全体で複数の窒素源の分割を初めて理解できました。我々 は他の N 化合物へより豊かな情報源からの窒素の再分配を解明し、揮発性分子とアミノ酸の代謝の起源を決定します。

概要

理解微生物代謝の動作方法は、発酵プロセスを改善し、発酵化合物の生産を調節する効率的な戦略の設計にとって重要な問題です。ゲノミクス、これらの最後の 2 つの数十年の機能ゲノミクスの進歩は主多くの微生物の代謝ネットワークのトポロジの知識の拡張に貢献しました。この情報へのアクセスは、1細胞機能の包括的な概観を目指すアプローチの開発につながった。これらの方法論はしばしばモデルに基づく測定可能なパラメーターの解釈に依存しています。これらの実験データは一方で、代謝産物の吸収と生産率、そして、同位体トレーサーから得られる定量的な細胞内の情報が、他の一方で、実験します。これらのデータは、定義された代謝ネットワーク2,3,4で異なる経路の体内活動の控除の基本情報を提供します。現在、利用可能な解析技術だけ単一要素の同位体を用いたとき分子のパターンを分類の正確な検出を有効にしておそらく共同 2 つの同位体要素をラベル付けするとき。さらに、ほとんどの成長条件の下で炭素源はのみ 1 つまたは 2 つの化合物の構成します。その結果、炭素基板から13C 同位体トレーサーの手法を用いて広くそして首尾よく適用された炭素代謝ネットワーク操作5,6,7 の完全な理解を開発するには ,8

対照的に、多くの自然と産業環境微生物の発育をサポートする利用可能な窒素リソースは分子の広い範囲の多くの場合で構成します。たとえば、ワインやビールの発酵中に窒素は 18 のアミノ酸と可変濃度9時アンモニウムの混合物として提供されます。この同化のためのアクセス可能な N 化合物の配列は通常アンモニウム窒素のユニークなソースを使用して、後者が達成、大きく異なる生理学的な研究は、一般的に使用されるこれらの複雑なメディア状況を作る。

全体的にみて、窒素化合物を直接タンパク質に組み込むか異化が内在化しています。酵母を含む多くの微生物の窒素代謝のネットワーク構造は基材の多様性に従って非常に複雑です。図解すると、このシステムは、グルタミン、グルタミン酸、および α-ケトグルタル酸1011トランスアミナーゼと deaminases の相互変換を触媒する窒素代謝の中核の組み合わせに基づいています。このネットワークを通じてアンモニウムまたは他のアミノ酸のアミン グループを集められ α-ケト酸をリリースします。これらの中間体から中央の炭素代謝 (CCM)12,13synthetized しています。この多数分岐反応と中間体、外因性の窒素源の異化と蛋白質構成アミノ酸の同化作用に関与するは、細胞の同化の要件を満たしています。これらの異なる相互接続されたルート経由でアクティビティは、代謝産物の排泄にもなります。特に、α-ケト酸は、高級アルコールとその酢酸エステル誘導体14製品の感覚のプロファイルに不可欠な貢献を生成するエールリッヒ経路を介してリダイレクトされます。その後、窒素代謝がどのように動作するバイオマス生産と揮発性分子 (香り) の形成に重要な役割を果たしています。

反応、酵素、窒素代謝に関与する遺伝子が広範囲の文献に記載されています。ただし、代謝ネットワーク全体で複数の窒素源の分布の問題がまだ解決されていません。この情報の欠如を説明する 2 つの主な理由があります。まず、窒素代謝ネットワークの重要な複雑さの観点から大量の定量的データは利用できなかったその操作の完全な理解に必要な今まで。第二に、多くの実験的制約と分析法の制限防止 CCM 機能の解明のために以前使用されたアプローチの実装。

これらの問題を克服するために、一連の同位体トレーサー実験からのデータの照合に基づいているシステム レベルのアプローチを開発しました。ワークフローは次のとおりです。
-同じ環境条件の下で発酵のセット実施別選択した栄養源 (基質) はたびにラベルが付いています。
● ラベルの付いた基板と濃度の残留濃度の由来化合物の同位体濃縮発酵の各段階での正確な定量分析法 (HPLC、GC-MS) の組み合わせで派生バイオマスを含む分類された分子の異化。
-それぞれの質量、同位体のバランスの計算消費標識分子と流束比の決定することによって微生物による複数の栄養源の管理のグローバル概要を取得するデータセットのそれ以上の統合解析.

この方法論を適用するには、文化のひずみ/微生物の再現可能な動作に注意を支払わなければなりません。さらに、異なった文化からのサンプルは、同じの明確に定義された発酵進行中に取られなければなりません。本稿で報告した実験的な作品、ロボット支援システムはこれらの制約を考慮して発酵のオンライン監視の使用です。

さらに、研究の科学的な問題に対処する適切なラベル付けされた基板 (化合物、自然とラベルの位置) のセットを選ぶことが不可欠です。ここでは、アルギニン、グルタミン、 15N 標識アンモニアは、グレープ ジュースは、3 つの主要な窒素源として選択されました。これは窒素化合物の消費から蛋白質構成アミノ酸に再分配のパターンを評価する許可。また揮発性分子の生産への貢献と消費されるアミノ酸の炭素骨格の運命を調査することを目指しました。満たすためにこの目的、均一に13C 標識ロイシン、バリン、スレオニン、イソロイシンに含まれていた研究エールリッヒ経路の主要な中間体から派生するアミノ酸として。

全体的に、酵母が外因性窒素源として炭素前駆体の過剰をさらに除去しながら発酵を通してその同化の要件を満たすための再配布によって複雑な窒素リソースを管理する方法を模索して定量的揮発性分子。本稿で報告した実験の手順は、他の微生物によって使用される他の複数の栄養源を調査に適用できます。それは、微生物の代謝に及ぼす遺伝的背景や環境の影響の分析のための適切なアプローチのように見えます。

プロトコル

1. 発酵・ サンプリング

  1. メディアと発酵の準備
    注: すべての発酵行われている同じひずみを用いた並行と同じで化学的に定義合成培地 (SM、組成表 1で提供される)、窒素源15アンモニウムとアミノ酸の混合物を含みます。各発酵他のラベルのないまま、単一窒素化合物が均一にラベル付けされた13C や15N フォーム (100%)、排他的に提供されます。一連の実験で使用されている分類された窒素ソースごとに (ここで: 15NH4U ・15U ・15U ・13U ・13U ・13U-13Thr C4、C6 イル C5 ヴァル、C6 ルー N2, Gln N4 Arg)、2発酵が用意されています。各条件のみラベルのない分子 (7 制御発酵) を使用して重複する発酵が実行されます。
    1. 検討する、SM の 500 mL を準備する N にソースごとに 100% で使用される化合物を除いて表 1に記載されているすべての窒素源を含む媒体ラベル フォームです。
      注: ラベルの分子は、次の手順で追加されます。
    2. 1 L フラスコ (10 分、100 ° C) の各培地を殺菌する磁気撹拌棒を含みます。表 1に報告される最終濃度に到達する標識分子の適切な量を検討し、媒体に溶解します。
    3. 使い捨て真空ろ過システム (セルロース アセテート膜、0.22 μ m) を使用してメディアを滅菌します。滅菌メスシリンダーを使用すると、媒体間の磁気撹拌棒を含み、酸素の流入を避けるため、CO2のリリースを許可する発酵ロックが装備 2 つの殺菌済み発酵 (250 mL) に分割します。
    4. インキュベーション ルーム 1 泊 (温度は 28 ° C で設定) に置くことによって 28 ° c 発酵フラスコを加熱します。
  2. 接種と発酵の監視
    1. 12 時間 (150 rpm) を揺れの 28 ° C で ypd 培地 10 mL を含んでいる生殖不能の管に出芽酵母株を成長します。その後、ピペット 1 mL YPD の preculture し、(15 mL 滅菌チューブ) で SM 培地 10 mL に転送。揺れ (150 rpm) の 28 ° C で 12 h の文化を孵化させなさい。
    2. 層流の下で割り切れる清酒を収集して 100 μ m の開口部を搭載する電子パーティクル カウンターを使用してセル人口を定量化します。遠心分離機の清酒 (2,000 × g、15 分間、4 ° C) および 2.5 108セル/mL の x の最終的な集中を取得する滅菌水の適切な量の餌を中断します。各発酵槽に細胞懸濁液の 1 ml を接種します。
      注: 発酵の進行状況を監視するために使用するロボット システムは、図 1で説明されます。
    3. 発酵プラットフォームを準備するには、正しく 21 位置攪拌プレート上に配置、270 rpm で攪拌率を設定サポート ガイドで、発酵をインストールします。各発酵のオンライン監視を開始、ロボット制御アプリケーションを起動し、「測定開始」ボタンをクリックして、実施される (300 mL) 発酵ボリュームを選択。
    4. 表示されるインターフェイスは、プラットフォームの数の徴候と発酵の位置を許可します。これが発生するためには、スロットの位置を右クリックし、「有効にする」この位置にある発酵槽の監視を有効にするを選択します。
    5. 完全に重量の取得を開始する前に、システム上で実行、計算ソフトを初期化します。"Initialiser"ボタンをクリックし、"ok"を検証します。重量の買収を開始するロボット制御アプリケーションの「スタート ボタン」をクリックしてします。
  3. サンプリングの手順
    注: 各発酵槽には、サンプルが作成され、CO2の生産 (計算ソフトウェアを実行しているコンピューターにオンライン表示される値) が必要なセット ポイントに達したら: 5、10、40、および本研究で 90 g/L。
    1. 標識化合物を使用するカルチャのプロシージャをサンプリングします。
      1. 遠心分離機の 2 つの 6 mL サンプル (2,000 × g、5 分、4 ° C)。-80 ° C で 2 つの因数で冷凍の培養上清を保存して5 ml の蒸留水と同位体濃縮測定-80 ° c の店で 2 回ペレットを洗浄します。
    2. サンプリング文化標識化合物なしのプロシージャ
      1. 乾燥重量を決定するために使用されるカルチャの 10 mL を収穫します。遠心 (2,000 × g、5 分、4 ° C) で 2 つの 10 mL のサンプルから細胞をペレットします。10 mL の蒸留水で 2 回ペレットを洗浄し、タンパク質およびアミノ酸含量の定量-80 ° C で保存します。

2 消費される窒素源の定量化

  1. 残留アンモニア濃度の酵素的定量法
    注: 培養上清中のアンモニア濃度の定量が、市販酵素ベース キット; を使用して実施します。すべての試薬は、製造元によって提供されます。
    1. だから正確に重量を量られた (NH4)2の 25 mg を溶解することにより標準的なアンモニア溶液 (61.4 mg/L) を準備4 100 mL のメスフラスコに。
    2. 製造元の指示を満たすためには、発酵前に CO2リリースの 5 g/L で撮影されたサンプルの 1:2 の希釈を実行します。1 M 島を追加することによって約 8 サンプルの pH を調整します。追加されたボリュームのノートを取るし、希釈倍率のアカウントにそれを取る。
    3. 4 mL 分光光度計のキュヴェットのミックス 100 μ L のサンプル (必要に応じて希釈)、蒸留水や試薬 1 (0.75 mM ADP と pH 7.8 緩衝の 30 U/mL のグルタミン酸脱水素酵素) 2 mL で標準的なアンモニア溶液と試薬 2 (1.3 mM NADH) を 500 μ l 添加します。室温で 15 分間インキュベート読み書き NADH 吸光度 340 nm (A1)。
    4. 試薬 3 (60 mM α-ケトグルタル酸で pH 8 バッファー) を 500 μ l 添加、室温で 20 分間サンプルをインキュベート、340 で NADH の吸光度を読み取り nm (A2)。
    5. アンモニア濃度を使用して計算します。
      Cアンモニア(g/L) = 0.083 x [(0.839 x A1-A2)サンプル- (0.839 x A1-A2)蒸留水]
    6. 標準液を正しい濃度が得られることを確認してください。
  2. ガスクロマトグラフィーによる残留のアミノ酸濃度の定量
    注: 培養上清中のアミノ酸濃度の定量できるニンヒドリンと N 化合物のポスト誘導とイオン交換クロマトグラフィーに基づいている専用アミノ酸分析システムを使用して達成される、比色検出。
    1. 参照ソリューションを準備するには、200 mM リチウム クエン酸バッファー pH 2.2 の 400 μ L に 2.5 mM グルタミン 200 μ L、200 μ L 基本的なアミノ酸の商業の混合物の中性および酸性アミノ酸の商業の混合物を 200 μ l 添加を追加します。この化学的に定義された参照ソリューションは、サンプルとして扱われます。
    2. 分子量の大きな分子を削除するサンプルの 800 μ L に 2.5 mM norleucine (内部標準) が含まれています 25% (w/v) スルホサリチル酸溶液 200 μ L を追加します。0.22 μ m 孔サイズの硝酸セルロースの膜 (シリンジ システム) を通じてフィルター遠心分離機 (3,000 × g、10 分、4 ° C)、4 ° C で 1 時間インキュベートします。
    3. プログラマ、ソフトウェアでボタンをクリックして「実行」するには液体クロマトグラフィー (LC) 解析アナライザーを陽イオン交換カラム (リチウム フォーム) を装備しました。温度勾配 (表 2) との組み合わせで対イオン濃度 pH 勾配と勾配を作成する連続リチウム バッファーがアミノ酸を溶出します。
    4. ニンヒドリン誘導体化後 570 で吸光光度検出器による窒素化合物の定量化 nm (紫色の着色: アミノ酸のニンヒドリンとアミン グループ間の反応) と 440 nm (黄色の着色: のニンヒドリン、イミンのグループ間の反応プロリン)。
    5. 内部標準として参照ソリューションと norleucine を使用して、製造元のソフトウェアを使用して試料中のアミノ酸濃度を計算するシングル ポイント内部キャリブレーションを実行します。

3. 蛋白質構成アミノ酸の定量

  1. 乾電池の重量の測定
    1. 真空装置を使用して、アルミのカップにあらかじめ重量を量られたは硝酸セルロース フィルター (細孔サイズ 0.45 μ m) を通して文化の 10 mL をフィルターします。50 mL の蒸留水で 2 回洗浄します。
    2. アルミのカップにフィルターを置き、カップにフィルターを計り直しする前に 48 h (重量の更なる変化が認められなかった) まで 105 ° C で熱オーブンで乾燥します。重量差を計算します。
    3. 酵母培養の乾電池の重量を正確に判断する少なくとも 3 つの独立した測定の平均値を計算します。
  2. 細胞のタンパク質含有率の定量化
    注: 細胞の蛋白分画の定量は、1.3.2 のセクションで説明したように得られたラベルのない細胞ペレットを使用して 3 通で、少なくとも実行されます。
    1. 冷凍餌に 1 mL の DMSO 溶液 (50 %v/v) の添加によりタンパク質を抽出し、105 ° C 乾燥した熱のオーブンで 1 時間インキュベートします。
    2. 青い複合体 (BCA アッセイ) ビシンコニン酸によって沈殿するさらに Cu+イオンに Cu ++の蛋白質によって減少に基づいている生化学的比色アッセイを用いた DMSO 抽出液のタンパク質含量を定量化します。
  3. 蛋白質の中でアミノ酸の相対的な貢献の定量
    注: 蛋白質構成アミノ酸のプロファイルは、ラベル付けされていない細胞ペレット (1.3.2) から 3 通で少なくとも決定されます。
    1. 激酸 (ギ酸 90%、10% 過酸化水素) の 200 μ L で細胞ペレットを中断することにより酸化のエキスを準備します。4 ° C で 4 時間インキュベートし、33.6 mg ナトリウム硫酸塩の追加によって反作用を停止します。
      注: 酸化ステップはシステインとメチオニンをイオン交換クロマトグラフィーによるさらに定量化がメチオニン スルホンとシステイン酸に変換する必要です。ただし、(チロシン、フェニルアラニン、ヒスチジン、アルギニン) いくつかのアミノ酸が酸化処理中に変性します。その結果、2 つの加水分解物 (と酸化なし) が用意されています。
    2. 細胞ペレットに 6 n 塩酸を 800 μ L を追加、抽出を酸化や乾熱オーブンで 110 ° C で 16 時間密閉ガラス管にサンプルをインキュベートします。2.5 mM norleucine の 200 μ L を追加し、窒素の流れと HCl を削除します。800 μ L の蒸留水で 2 回放置とエタノールの 800 μ L (再乾燥エキスと窒素気流で液体を削除すること) を洗います。リチウム 200 mM 酢酸緩衝液, pH 2.2 の 800 μ L でとる。
      注: する必要がありますに留意加水分解のインキュベーション時間いくつかのアミノ酸は酸性条件下で安定ではないと。このアミノ酸は、塩酸加水分解中に変性完全としてトリプトファン分数蛋白質は文献16で見つかったデータから推定されます。
    3. シングル ポイントの内部校正の加水分解の標準を準備します。リチウム 200 mM 酢酸緩衝液、pH 2.2, 625 μ M メチオニン スルフォン, 625 μ M システイン酸および 625 μ M norleucine を含む 840 μ に加水分解アミノ酸の商用ソリューションの 160 μ L を追加します。
    4. セクション 2.2 で説明したガスクロマト グラフ法を用いたタンパク質のアミノ酸の相対濃度を決定します。
  4. 計算
    1. タンパク質抽出物 (合計 mg/l) で測定したアミノ酸の総量によって各アミノ酸 (mg/L) の測定量で除して各アミノ酸蛋白質の重量割合を計算します。
    2. 文化 (mg/L)、すなわちバイオマスのタンパク質含有量と文化 (mg/L) 各蛋白質構成アミノ酸の濃度を評価するために、乾燥重量と製品中のタンパク質の濃度をこの割合を乗算します。

4 同位体濃縮アミノ酸の測定

注: 同位体濃縮アミノ酸の測定標識細胞ペレットを使用します。3 つの異なるエージェントは、アミノ酸の同位体濃縮を定量化する誘導体化のステップに使用されます。アミノ酸の分類パターンを予測してクラスター イオンの強度を測定します。大量のアイソトポマーの豊かさに対応する各クラスター イオンからの信号 (m0 = ラベル付け、m+1なし = 1 のラベル付き原子...) アミノ酸フラグメントの。DMADMF 手順後に得られるクロマト グラムの例を図 2に提供されます。

  1. 加水分解バイオマス
    1. 乾熱のオーブンでしっかりと閉じたガラス管で 105 ° C で 16 時間サンプルをインキュベートを 6 M 塩酸の 1.2 mL を追加して (乾燥バイオマス 1-2 mg に対応する) 細胞ペレットを加水分解します。
    2. 3,000 x g細胞の残骸を削除する 5 分間蒸留水および遠心分離機の 1.2 mL を追加します。6 400 μ L 分画オープン ガラス チューブに上清を配布します。105 ° C で熱オーブンで分数をドライ シロップ (4-5 h) の整合性に到達するまで。
  2. Ethylchloroformate (ECF) 誘導体化
    1. 20 mm HCl; 200 μ L の乾燥した加水分解物を溶解します。ピリジン: エタノール (1:4) の 133 μ L を追加します。アミノ酸を derivatize し、すべての CO2が解放されるまで待機する ECF の 50 μ L を追加します。500 μ L の derivatized の化合物を抽出するジクロロ メタンを含むチューブを遠心分離機に混合物を転送します。
    2. 渦を 10 s と遠心分離機管 10,000 x g で 4 分間のためにそれらGC/MS 楽器にサンプルを直接注入が円錐ガラス挿入物が含まれている GC バイアルをパスツール ピペットで移しなさいと転送低い有機相を収集します。
  3. (N, N)-ジメチルホルムアミド ジメチル アセタール (DMFDMA) 誘導体化。
    1. メタノールの 50 μ L、200 μ L アセトニ トリルの乾燥の加水分解物を溶解します。DMFDMA の 300 μ L を追加します。渦管と転送 GC オートサンプラー試料バイアル円錐ガラス挿入物が含まれているです。
  4. N, O-ビス (トリメチルシリル) トリフルオロアセトアミド (BSTFA) 誘導体化
    1. アセトニ トリル 200 μ L で、加水分解を中断します。BSTFA 200 μ L を加えて密閉ガラス管を閉じる GC バイアルに直接抽出物を転送する前に 135 ° C で 4 時間孵化させなさい。
  5. ガスクロマトグラフィー質量分析
    1. オートサンプラーのインジェクターが装備され、質量分析計を結合するガスのクロマト グラフのサンプルを分析します。
      1. 楽器固有のソフトウェアを使用して、計測器を制御およびクロマト グラムを分析します。「シーケンス」メニューのサンプル リストを作成する「サンプル ログ テーブル」をクリックし、注射を開始する「実行」ボタンをクリックします。
        注: ガス クロマト グラフが付いて 30 m × 0.25 mm 極冠シリカ毛細管カラム 0.15 μ m 膜厚。150 ° C で質量分析計四重極温度を設定し、すべての解析の 250 ° C で転送ラインを保持します。3 つの分析プログラム、各それぞれの誘導体化のエージェントに固有が使用されます。
      2. ECF 誘導体:1.2 mL/分の流れと移動相として使用ヘリウム 230 ° C の 250 ° C のソースの入口の温度設定3:1 の分割比で 1 μ L のサンプルを注入するオートサンプラーをプログラムします。オーブンの温度を次のように漸増解析を実行: 130 ° C、3 分。勾配 15 ° C/分 260 ° c;20 分間 260 ° c の温度を維持します。
      3. DMFDMA 誘導体:1.2 mL/分の一定の流れと移動相として使用ヘリウム 230 ° C の 250 ° C のソースの入口の温度設定3:1 の分割比で 1 μ L のサンプルを注入するオートサンプラーをプログラムします。オーブンの温度を次のように漸増解析を実行: 60 ° C で 1 分。130 ° C に 20 ° C/分のグラデーション260 ° C への 4 ° C/分の 2 つ目のグラデーション10 分、260 ° c の温度を維持します。
      4. システム誘導体:1.2 mL/分の一定の流れと移動相として使用ヘリウム 275 ° C、300 ° C では、ソースの入口の温度設定解析を実行 (注射: 1 μ L)、徐々 に次のようにオーブンの温度を増加: 110 ° C 1 分;最初勾配 2 ° C/分 154 ° c;300 ° C に 5 ° C/分の 2 つ目のグラデーション10 分間 300 ° c 温度を維持します。
      5. 検出手順:誘導体化のモードごと 70 eV で肯定的な電子衝突イオン化スキャン モードでサンプル (1 μ L) 注入し、各アミノ酸の保持時間のノートを取る。
      6. クロマト グラム全体と各アミノ酸の特性と表 3に記載されている別の選択したイオンのタイム ・ ウィンドウを定義するのにこれらの値を使用します。これらの値は、各アミノ酸に含まれてする必要があります。SIM 検出プログラムにこの情報を含めるし、70 eV で肯定的な電子衝突イオン化と SIM モードで解析を実行します。
    2. 分析の結果を収集します。すなわち、各アミノ酸の異なる質量のアイソトポマーに対応する強度のクラスターを記録します。自然なラベリングの修正および同位体濃縮アミノ酸 (蛋白質の合計額に対するアミノ酸のラベルの一部として定義されているを計算する dedicatedsoftware17を使用してデータを処理します。サンプル)。
      注: 分子の同位体濃縮 (すなわち)、パーセンテージ、付け質量アイソトポマーの修正された強度の合計を分割計算 (m1, m2、. .mn) 修正の合計ですべての質量のアイソトポマーの強度 (m2,..., m1m0mn)。
      I. E. = (m1 + m2 +... + mn)/(m0 m1+ m2 +... + mn)

5. 定量化と揮発性の化合物の同位体濃縮

  1. 標識の揮発性化合物の抽出
    1. 上清の 5 mL に重水素の内部基準の 10 μ L を追加 (重水素化合物の最終濃度: 100 μ g/L) 15 mL ガラス管に。ジクロロ メタンの 1 mL を加えて、しっかりとチューブを閉じると 20 分 3,000 × g で 5 分間遠心揺動のプラットフォームでそれらを振るし、15 mL ガラス管に有機低位相を収集します。ジクロロ メタン抽出を繰り返します。
    2. 無水硫酸ナトリウム 500 mg 以上の有機抽出物を乾燥、パスツール ピペットを使い、液相を収集します。窒素フラックス下 4 つの要因によって抽出物を集中し、GC オートサンプラー バイアルに転送。
  2. 揮発性化合物の GC-MS による定量化
    1. 0.25 μ m の膜厚で、ガスクロマト グラフ 30 m × 0.25 mm の溶融シリカ毛細管カラムとを装備し、インジェクターは、250 ° C の転送ライン 1.0 mL/分ホールドの定数ヘリウム フローに適用
    2. 10:1 の分割比で 2 μ L のサンプルを注入し、次のオーブン温度プロファイルを使用して抽出した揮発性の分子を分離: 40 ° C で 3 分間温度を保持、4 ° C/分による増加 220 ° C とし、保持 220 ° C のオーブンで 20 分。
    3. そのソース温度は 230 ° C で 150 ° C に設定その四重極の質量分析計温度設定と質量分析計を用いた化合物を検出します。70 eV と表 4で報告される揮発性の化合物に特定イオンのクラスターを使用して肯定的な電子衝突イオン化の選択イオン監視 (SIM) モードで質量スペクトルを記録します。
    4. 外部 7 点校正を使用して、対応するイオン クラスターの発光強度の合計からの揮発性の分子の濃度を定量化します。100% エタノール (10 g/L) 各化合物の溶液を準備します。原液を混合することによって、揮発性分子 (エチル エステル、酢酸、アルコール、酸) の各クラスの標準溶液を準備します。最後に、希釈する 12% 溶液 ph 校正ソリューションを準備する 3.3 調整 5 g/L 酒石酸を含む標準溶液の量が異なる。
    5. 並行して、各イオン クラスターの発光強度の自然なラベリングの修正し、分子のラベルの一部として定義し、専用のソフトウェアを使用してパーセンテージとして表されます揮発性化合物の同位体濃縮を計算17

6. データセットの統合解析の計算

  1. Raw データの収集
    1. 細胞外のアミノ酸、細胞の乾燥重量、セル、揮発性分子および同位体濃度のタンパク質含有量の濃度に対応する raw データ値を入力テーブル 5 6、7、および8に示すようにスプレッドシートを使用して蛋白質構成アミノ酸・揮発性分子の充実。
      注: 表に示すデータは mM で表されます。すべての結果はまた窒素の原子質量の蛋白質構成アミノ酸の millimolar 濃度を乗じて mg/L の N、各分子の分子量をミリメートルの値を乗じて mg/L で表されます (14 u) および窒素 ato の番号この分子の異化によって提供される ms。
    2. アミノ酸 (mg/l の合計) の合計量 mg/l、加水の量で割って各蛋白質のアミノ酸の質量の割合を計算します。
    3. 平均、標準偏差、および独立した実験で得られたデータから平均値の標準誤差を計算します。
    4. バイオマス (g 蛋白質/g DW) の蛋白分画と乾し物率 (バイオマス) の蛋白質 (mg aa/g タンパク質) で、このアミノ酸の割合を乗じて各アミノ酸の蛋白質構成濃度 (mg/L) を計算しますメディア (g/L の DW)。
  2. 15N 同位体トレーサー実験
    1. 合計濃度 (mg/L の N で表される) からアミノ酸 (mg/L の N で表される) 内に存在する窒素のラベルとラベルのない分数の計算の表 9で説明されているスプレッドシートを使用して、同位体濃縮。各アミノ酸の濃度とその同位体の濃縮製品に対応するラベル付きの分数とラベルのない部分は合計とラベルの量の違い。
    2. 次に、(mg/L の N) の翼、Gly、ヴァル、Asp、Phe、ルー、イル、スレオニン、Ser、プロ、Lys の総量、彼、Glu、Arg を加算合計を割ることによって本研究で定量化蛋白質構成アミノ酸に含まれているタンパク質の窒素の割合を決定します。この合計で蛋白質に含まれる窒素のマウント。
    3. アルギニン、グルタミンまたは (アラ、Gly、ヴァル、Asp における定量化された蛋白質構成アミノ酸の (mg/L の N) 内のラベル付きの分数の合計によって本研究で定量化蛋白質構成アミノ酸で回収されたアンモニウムによって提供される窒素を計算します。Phe、ルー、イル、スレオニン、Ser、プロ、リシン、彼、グルタミン酸、および Arg) 15N 標識アルギニン、グルタミン、またはアンモニウム、定量化された蛋白質構成アミノ酸中の窒素の合計量で除算してこのラベル窒素画分の存在下で実験中酸。
    4. 13C や15N 同位体トレーサー実験 (表 7にスプレッドシート) からのデータを組み合わせることによりデノボ合成に使用される窒素の細胞内のプールに 3 つの最も豊富なアミノ酸の貢献を評価します。
    5. 蛋白質構成ヴァル、ルー、イル、または木の総量 (mM 単位) から消費化合物 (13C 実験) の直接の混入およびde novo synthetized 3 から窒素を用いていた部分から派生した一部を差し引く他のアミノ酸から窒素を使用してde novo synthetized 割合を評価するための主要な源。
    6. その後、アミノ酸・ デ ・ ノボsynthetized (mM) のアミノ酸の総量に NH、Arg、Gln4+ (合計ミリメートルで表される) によって提供される窒素を使用して量の比率を計算の貢献を定量化するにはアルギニン、グルタミン、および細胞内窒素プールにアンモニウム。
  3. 13C 同位体トレーサー実験
    1. 単位 mM と13C 標識ルー ヴァルの存在下での実験の間に得られた蛋白質構成アミノ酸の同位体濃縮濃度から蛋白質構成アミノ酸のラベルとラベルのない分数を計算します。イルまたは Thr (6.2.1、表 10を参照してください)。
    2. 単位 mM と13C 標識ルー ヴァル、イル、または木 (の存在下での実験の間に得られた揮発性化合物の同位体濃縮濃度から揮発性化合物のラベルとラベルのない分数を計算します。表 10)。

結果

ワインの発酵中に見つかった複数の窒素源の酵母によって管理を調査するために実装されたワークフローの模式図を図 3に示します。
サンプリング、生物学的パラメーター-生育特性、窒素消費パターン、および蛋白質構成アミノ酸-ショー発酵 (図 4) の間で再現性の高いプロファイルの異なるポイント。この一貫性は、?...

ディスカッション

微生物代謝の操作を理解するための有望なアプローチは、同位体トレーサー実験による代謝ネットワークを通じて化合物の分配を定量化します。この手法は、1 つまたは 2 つのラベルの付いた基板で正常に適用されている間現在実装できません複数標識元素同位体 (すなわち、2 つ以上の基板) を使用してさまざまなソースの代謝を研究します。確かに、利用可能な分析技術は、共同 2 ?...

開示事項

著者が明らかに何もありません。

謝辞

ジャン ・ ロッシュ ムレ、シルヴィ Dequin と発酵のロボット支援システムの構想に貢献するジャン = マリー ・ Sabalyrolles とマルティーヌ Pradal、ニコラ ・ ブーヴィエとパスカル Brial テクニカル サポートのために感謝しますこのプロジェクトは、凝った et ミニステール ・ デ ・教育、国立図書館、デ ラによって提供された資金デ ラ テク。

資料

NameCompanyCatalog NumberComments
D-GlucosePanReac141341.0416
D-FructosePanReac142728.0416
DL-Malic acidSigma AldrichM0875
Citric acid monohydrateSigma AldrichC7129
Potassium phosphate monobasicSigma AldrichP5379
Potassium sulfateSigma AldrichP0772
Magnesium sulfate heptahydrateSigma Aldrich230391
Calcium chloride dihydrateSigma AldrichC7902
Sodium chlorideSigma AldrichS9625
Ammonium chlorideSigma AldrichA4514
Sodium hydroxideSigma Aldrich71690
Manganese sulfate monohydrateSigma AldrichM7634
Zinc sulfate heptahydrateSigma AldrichZ4750
Copper (II) sulfate pentahydrateSigma AldrichC7631
Potassium iodineSigma AldrichP4286
Cobalt (II) chloride hexahydrateSigma AldrichC3169
Boric acidSigma AldrichB7660
Ammonium heptamolybdateSigma AldrichA7302
Myo-inositolSigma AldrichI5125
D-Pantothenic acid hemicalcium saltSigma Aldrich21210
Thiamine, hydrochlorideSigma AldrichT4625
Nicotinic acidSigma AldrichN4126
PyridoxineSigma AldrichP5669
BiotineSigma AldrichB4501
ErgostérolSigma AldrichE6510
Tween 80Sigma AldrichP1754
Ethanol absoluteVWR Chemicals101074F
Iron (III) chloride hexahydrateSigma Aldrich236489
L-Aspartic acidSigma AldrichA9256
L-Glutamic acidSigma AldrichG1251
L-AlanineSigma AldrichA7627
L-ArginineSigma AldrichA5006
L-CysteineSigma AldrichC7352
L-GlutamineSigma AldrichG3126
GlycineSigma AldrichG7126
L-HistidineSigma AldrichH8000
L-IsoleucineSigma AldrichI2752
L-LeucineSigma AldrichL8000
L-LysineSigma AldrichL5501
L-MethionineSigma AldrichM9625
L-PhenylalanineSigma AldrichP2126
L-ProlineSigma AldrichP0380
L-SerineSigma AldrichS4500
L-ThreonineSigma AldrichT8625
L-TryptophaneSigma AldrichT0254
L-TyrosineSigma AldrichT3754
L-ValineSigma AldrichV0500
13C5-L-ValineEurisotopCLM-2249-H-0.25
13C6-L-LeucineEurisotopCLM-2262-H-0.25
15N-Ammonium chlorideEurisotopNLM-467-1
ALPHA-15N-L-GlutamineEurisotopNLM-1016-1
U-15N4-L-ArginineEurisotopNLM-396-PK
Ethyl acetateSigma Aldrich270989
Ethyl propanoateSigma Aldrich112305
Ethyl 2-methylpropanoateSigma Aldrich246085
Ethyl butanoateSigma AldrichE15701
Ethyl 2-methylbutanoateSigma Aldrich306886
Ethyl 3-methylbutanoateSigma Aldrich8.08541.0250
Ethyl hexanoateSigma Aldrich148962
Ethyl octanoateSigma AldrichW244910
Ethyl decanoateSigma AldrichW243205
Ethyl dodecanoateSigma AldrichW244112
Ethyl lactateSigma AldrichW244015
Diethyl succinateSigma AldrichW237701
2-methylpropyl acetateSigma AldrichW217514
2-methylbutyl acetateSigma AldrichW364401
3-methyl butyl acetateSigma Aldrich287725
2-phenylethyl acetateSigma Aldrich290580
2-methylpropanolSigma Aldrich294829
2-methylbutanolSigma Aldrich133051
3-methylbutanolSigma Aldrich309435
HexanolSigma Aldrich128570
2-phenylethanolSigma Aldrich77861
Propanoic acidSigma Aldrich94425
Butanoic acidSigma Aldrich19215
2-methylpropanoic acidSigma Aldrich58360
2-methylbutanoic acidSigma Aldrich193070
3-methylbutanoic acidSigma AldrichW310212
Hexanoic acidSigma Aldrich153745
Octanoic acidSigma AldrichW279900
Decanoic acidSigma AldrichW236403
Dodecanoic acidSigma AldrichL556
Fermentor 1LLegallaisAT1357Fermenter handmade for fermentation
Disposable vacuum filtration systemDominique Deutscher029311
Fermenters (250 ml)LegallaisAT1352Fermenter handmade for fermentation
Sterile tubesSarstedt62.554.502
Fermentation locksLegallaisAT1356Fermetation locks handmade for fermentation
BactoYeast ExtractBecton, Dickinson and Company212750
BactoPeptoneBecton, Dickinson and Company211677
Incubator shakerInfors HT
Particle CounterBeckman Coulter6605697Multisizer 3 Coulter Counter
CentrifugeJouanGR412
Plate Butler Robotic systemLab Services BVPF0X-MAAutomatic instrument
Plate Butler SoftwareLab Services BVRobot monitor software
RobViewIn-house developed calculation software
My SQLInternational source database
Cimarec i Telesystem Multipoint StirrersThermo Fisher Scientific50088009String Drive 60
BenchBlotter platform rockerDutscher60903
Ammonia enzymatic kitR-Biopharm AG5390
Spectrophotometer cuvettesVWR634-0678
Spectrophotometer UviLine 9400Secomam
Amino acids standards physiological - acidics and neutralsSigma AldrichA6407
Amino acids standards physiological - basicsSigma AldrichA6282
Citrate lithium buffers - Ultra ninhydrin reagentBiochromBC80-6000-06
Sulfosalycilic acidSigma AldrichS2130
NorleucineSigma AldrichN1398
Biochrom 30 AAABiochrom
EZChrom EliteBiochromInstrument control and Data analysis software
Ultropac 8 resin LithiumBiochromBC80-6002-47Lithium High Resolution Physiological Column
Filter Millex GVMerck MilliporeSLGVX13NLMillex GV 13mm (pore size 0.22 µm)
Membrane filter PALLVWR514-4157Supor-450 47mm 0.45µm
Vacuum pump Millivac MiniMilliporeXF5423050
Aluminium smooth weigh dish 70mmVWR611-1380
Precision balanceMettlerSpecifications AE163
Dimethyl sulfoxid driedMerck1029310161(max. 0.025% H2O) SeccoSolv
Combustion ovenLegallais
Pierce BCA protein assay kitInterchimUP40840A
Formic acidFluka94318
Hydrogen peroxideSigma AldrichH1009
Hydrochloric Acid Fuming 37% EmsureMerck1003171000Grade ACS,ISO,Reag. Ph Eur
Lithium acetate bufferBiochrom80-2038-10
Commercial solution of hydrolyzed amino acidsSigma AldrichAAS18
L-Methionine sulfoneSigma AldrichM0876
L-Cysteic acid monohydrateSigma Aldrich30170
Pyrex glass culture tubesSigma AldrichZ653586
PyridineAcros Organics13178050099% Extrapure
Ethyl chloroformateSigma Aldrich23131
DichloromethaneSigma Aldrich32222
VialsSigma Aldrich854165
Microinserts for 1.5ml vialsSigma AldrichSU860066
GC/MSAgilent Technologies5890 GC/5973 MS
ChemstationAgilent TechnologiesInstrument control and data analysis software
MethanolSigma Aldrich34860Chromasolv, for HPLC
AcetonitrileSigma Aldrich34998ChromasolvPlus, for HPLC
N,N-Dimethylformamide dimethyl acetalSigma Aldrich394963
BSTFASigma Aldrich33024
DB-17MS columnAgilent Technologies122-473130m*0.25mm*0.15µm
Sodium sulfate, anhydrousSigma Aldrich238597
Technical nitrogenAir products14629
Zebron ZB-WAX columnPhenomenex7HG-G007-1130m*0.25mm*0.25µm
Helium BIPAir products26699
Glass Pasteur pipettesVWR612-1702

参考文献

  1. Osterlund, T., Nookaew, I., Nielsen, J. Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnol Adv. 30, 979-988 (2012).
  2. Gombert, A. K., Moreirados Santos, M., Christensen, B., Nielsen, J. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol. 183, 1441-1451 (2001).
  3. Wiechert, W. 13C metabolic flux analysis. Metab Eng. 3, 195-206 (2001).
  4. Fischer, E., Zamboni, N., Sauer, U. High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal Biochem. 325, 308-316 (2004).
  5. Rantanen, A., Rousu, J., Jouhten, P., Zamboni, N., Maaheimo, H., Ukkonen, E. An analytic and systematic framework for estimating metabolic flux ratios from 13C tracer experiments. BMC Bioinformatics. 9, 266 (2008).
  6. Zamboni, N. 13C metabolic flux analysis in complex systems. Curr Opin Biotechnol. 22, 103-108 (2011).
  7. Kruger, N. J., Ratcliffe, R. G. Insights into plant metabolic networks from steady-state metabolic flux analysis. Biochimie. 91, 697-702 (2009).
  8. Quek, L. -. E., Dietmair, S., Krömer, J. O., Nielsen, L. K. Metabolic flux analysis in mammalian cell culture. Metab Eng. 12, 161-171 (2010).
  9. Perpete, P., Santos, G., Bodart, E., Collin, S. Uptake of amino acids during beer production: The concept of a critical time value. J Am Soc Brew Chem. 63, 23-27 (2005).
  10. Magasanik, B., Kaiser, C. A. Nitrogen regulation in Saccharomyces cerevisiae. Gene. 290, 1-18 (2002).
  11. Ljungdahl, P. O., Daignan-Fornier, B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics. 190, 885-929 (2012).
  12. Cooper, T. G., Strathern, J. N., Jones, E. W., Broach, J. R. Nitrogen metabolism in Saccharomyces cerevisiae. The molecular biology of the yeast Saccharomyces: Metabolism and gene expression. , 39-99 (1982).
  13. Jones, E. W., Fink, G. R., Strathern, J. N., Jones, E. W., Broach, J. R. Regulation of amino acid and nucleotide biosynthesis in yeast. The molecular biology of the yeast Saccharomyces: Metabolism and gene expression. , 182-299 (1982).
  14. Hazelwood, L. A., Daran, J. -. M., van Maris, A. J. A., Pronk, J. T., Dickinson, J. R. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol. 74, 2259-2266 (2008).
  15. Bely, M., Sablayrolles, J. M., Barre, P. Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. J Ferment Bioeng. 70, 246-252 (1990).
  16. Forster, J., Famili, I., Fu, P., Palsson, B. O., Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244-253 (2003).
  17. Millard, P., Letisse, F., Sokol, S., Portais, J. C. IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics. 28, 1294-1296 (2012).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

131 GC MS

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved