このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
本プロトコルでは、生細胞顕微鏡に基づく細胞拡散アッセイの実験手順を提示する。蛍光標識細胞の偏りのないセグメンテーションや細胞拡散時のラメリポディアダイナミクスの定量分析のためのオープンソース計算ツールを提供します。
細胞の拡散は、媒体に懸濁した細胞が基板に付着し、丸みを帯びた薄い広がり形状に平坦化する動的なプロセスです。細胞基板の付着に続いて、細胞は細胞体から発せられる薄いラメリポディアのシートを形成する。ラメリポディアでは、球状アクチン(G-アクチン)モノマーが、細胞膜に押し出される緻密な糸状アクチン(F-アクチン)メッシュワークに重合し、細胞が広がるのに必要な機械的力を提供する。特に、ラメリポディアにおけるアクチン重合を制御する分子奏者は、細胞移動やエンドサイトーシスなどの他の多くの細胞プロセスに不可欠です。
広がる細胞は、細胞周辺全体に広がる連続的なラメリポディアを形成し、持続的に外側に拡大するので、細胞拡散アッセイは、ラメリポジア性突起の運動を評価するための効率的なツールとなっています。細胞拡散アッセイのいくつかの技術的実装が開発されているが、データ分析のためのステップバイステップのプロトコルと計算ツールの両方を含むワークフローの詳細な説明は、現在欠けている。ここでは、細胞拡散アッセイの実験手順を説明し、広がる際の細胞エッジダイナミクスの定量的かつ公平な分析のためのオープンソースツールを提示する。薬理学的操作および/または遺伝子サイレンシング技術と組み合わせると、このプロトコルは、ラメリポアル突起を調節する分子プレーヤーの大規模なスクリーンに適しています。
ラメリポジア性突起は、移動細胞の前部に形成される顕著な細胞骨格構造である。ラメリポディアでは、Arp2/3複合体およびフォルミンの助けを借りてアクチンを重合すると、血漿膜1,2に対して押し出される急速に成長する分岐アクチンメッシュワークが作成される。アクチンメッシュワークによって生じる押し出し力は、細胞を1、3、4、5に物理的に推進する。ラメリポジア突起に不可欠なArp2/3複合体またはシグナル伝達経路の破壊の枯渇は、しばしば細胞の移動を損なう6,7。 また、ラメリポディア欠損細胞の移動も報告されているが、8,9、細胞遊離におけるラメリポディアの重要性は、この突起構造の枯渇が、細胞が複雑な生物学的微小環境6,10を移動する能力を妨げるとして明らかである。
細胞の移動におけるラメリポディアの調節を理解する大きな障害は、ラメリポアル突起動態、サイズ、および形状11、12、13、14における自然変動である。さらに、最近の研究では、ラメリポディアは、変動、周期的、および加速する突起14,15を含む複雑な突起行動を示すことが実証されている。細胞6,16を移動させる非常に可変的なラメリポディアと比較して、細胞の広がりの間に形成されるラメリポディアはより均一である12。細胞の広がりと移動の突起活性は、分岐アクチンネットワーク、収縮アクトミオシン束、およびインテグリンベースの細胞マトリックス接着を含む同一の高分子集合体によって駆動されるため、細胞の広がりは、ラメリポディアダイナミクスの調節を調べるためのモデルとして広く用いられてきた。
細胞拡散は、懸濁液中の細胞がまずインテグリン系付着17、19、20を介して基質に付着し、次いでアクチンベースの突起部21、22、23を伸ばして広がる動的メカノケミカルプロセスである。 広がり段階の間、細胞体から発するラメリポディアは、引き込みや失速をほとんどあるいは全く伴わない、等熱帯かつ持続的に突出する。最も一般的に使用される細胞拡散プロトコルはエンドポイントアッセイであり、広がる細胞はめっき19、24の後のさまざまな時間に固定される。これらのアッセイは、迅速かつ簡単ではあるが、ラメリポディアの動的特徴の変化を検出するために診断力に制限されている。ラメリポディアダイナミクスを制御する分子機構を決定するために、Sheetzグループは、生きた広がり細胞の定量分析の使用を開拓し、細胞エッジ突起11、12、22の多くの基本的特性を明らかにした。これらの研究は、生細胞拡散アッセイが細胞生物学研究所のツールボックスにおける堅牢で強力な技術であることを実証した。それにもかかわらず、ライブセル拡散アッセイのための詳細なプロトコルとオープンソース計算ツールは、現在、細胞生物学コミュニティでは利用できません。この作業を行うために、当社のプロトコルは、ライブ拡散セルのイメージング手順を概説し、自動画像解析ツールを提供します。この方法を検証するために、実験的な治療法としてArp2/3阻害を用い、Arp2/3複合体の機能を阻害しても細胞拡散は阻止されず、細胞突起速度の大幅な低下、細胞端突起の安定性が著しく低下し、細胞縁部がギザギザに生じることを示した。これらのデータは、ライブセルイメージングと自動画像解析の組み合わせが、細胞エッジダイナミクスを分析し、ラメリポディアを調節する分子成分を同定するのに有用なツールであることを示しています。
1. 細胞の播種
注:記載された細胞拡散プロトコルは、PH-Akt-GFP(PIP3/PI(3,4)P2の蛍光マーカー)を発現するマウス胚性線維芽細胞(MEF)を用いて行った。この細胞株は、CRISPR媒介遺伝子編集によるPH-Akt-GFP(Addgene #21218)の発現構築物をジェノミスティックに統合して生成した。しかしながら、ゲノム中で一過性または一体に発現される他の蛍光マーカーも、このアッセイに使用することができる。最適な画像セグメンテーションのために、細胞質に均一に分布する蛍光マーカー(例えば、細胞質GFP)を使用することを推奨します。
2. 薬物インキュベーションと細胞回復
3. 磁気チャンバの準備
4. 画像取得
5. 細胞の広がり時の細胞面積、円形、突起ダイナミクスの解析
6. キモグラフを使用した細胞拡散時の細胞エッジダイナミクスの定量化
上記のプロトコルは、細胞拡散の生細胞イメージングのための実験手順と、細胞拡散ダイナミクスの定量的分析のための計算ツールを説明する。計算ツールは、低スループットまたはハイスループット形式で使用して、セルのリーディングエッジでアクチン重合機械を調節する分子プレーヤーを識別することができます。
実験手順の概略図を図 1に...
記載された細胞拡散アッセイは、形態変化(例えば、細胞サイズおよび形状)および細胞エッジの動き(すなわち、突起速度および引き込み頻度)の連続的追跡を可能にする。これは、ほとんどの細胞拡散プロトコル19、24において欠けている特徴である。一般的に使用されるエンドポイント細胞拡散アッセイは細胞拡散速度の決定を可能に...
著者らは開示するものは何もない。
この研究は、コノート基金の新調査官賞(S.P.、カナダイノベーション財団、NSERCディスカバリー補助金プログラム)(RGPIN-2015-05114とRGPIN-2020-05881)、マンチェスター大学とトロント大学共同研究基金、トロント大学XSeedプログラムによって支援されました。
Name | Company | Catalog Number | Comments |
0.05% Trypsin (0.05%), 0.53 mM EDTA | Wisent Bioproducts | 325-042-CL | |
10.0 cm Petri Dish, Polystyrene, TC Treated, Vented | Starstedt | 83.3902 | |
15 mL High Clarity PP Centrifuge Tube, Conical Bottom, with Dome Seal Screw Cap, Sterile | Falcon | 352097 | |
1-Well Chamlide CMS for 22 mm x 22 mm Coverslip | Quorum Technologies | CM-S22-1 | |
35 mm TC-treated Easy-Grip Style Cell Culture Dish | Falcon | 353001 | |
50 mL Centrifuge Tube, Transparent, Plug Seal | Nest | 602002 | |
6.0 cm Cell Culture Dishes Treated for Increased Cell Attachment, Sterile | VWR | 10861-658 | |
Arp2/3 Complex Inhibitor I, CK-666 | Millipore Sigma | 182515 | |
Camera, Prime 95B-25MM | Photometrics | ||
Dimethyl Sulfoxide, Sterile | BioShop | DMS666 | |
DMEM, 1x, 4.5 g/L Glucose, with L-Glutamine, Sodium Pyruvate and Phenol Red | Wisent Bioproducts | 319-005 CL | |
DMEM/F-12, HEPES, No Phenol Red | Gibco | 11039021 | |
D-PBS, 1X | Wisent Bioproducts | 311-425 CL | |
Fetal Bovine Serum | Wisent Bioproducts | 080-110 | |
Fiji Software | ImageJ | ||
HEPES (1 M) | Gibco | 15630080 | |
Human Plasma Fibronectin Purified Protein 1 mg | Millipore Sigma | FC010 | |
Immersion Oil | Cargille | 16241 | |
L-Glutamine Solution (200 mM) | Wisent Bioproducts | 609-065-EL | |
MEM Non-Essential Amino Acids Solution (100X) | Gibco | 11140050 | |
Micro Cover Glasses, Square, No. 11/2 22 x 22 mm | VWR | CA48366-227-1 | |
Microscope Body, Eclipse Ti2-E | Nikon | ||
Objective, CFI Plan Apo Lambda 60X Oil | Nikon | MRD01605 | |
Penicillin-Streptomycin | Sigma | P4333 | |
Spinning Disk, Crest Light V2 | CrestOptics | ||
Spyder | Anaconda | ||
Stage top incubator | Tokai Hit | ||
Statistics Software, Prism | GraphPad | ||
Tweezers, Style 2 | Electron Microscopy Sciences | 78326-42 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請さらに記事を探す
This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved