JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

ここでは、非放射性化学発光検出を用いてテロメア長を定量するためのプロトコルについて、TAGGGテロメア長アッセイキットの様々な性能パラメータ(緩衝液量やプローブ濃度など)の最適化を中心に詳細に説明する。

要約

テロメアは染色体末端に存在する反復配列です。それらの短縮はヒト体細胞の特徴です。短縮は、末端複製の問題およびテロメア長の維持に関与するテロメラーゼ酵素の欠如のために起こる。興味深いことに、テロメアは、汚染物質、感染性病原体、栄養素、放射線などの細胞外因子によって影響を受ける可能性のある酸化ストレスや炎症などのさまざまな内部生理学的プロセスに応答して短くなります。したがって、テロメア長は、老化および様々な生理学的健康パラメータの優れたバイオマーカーとして役立つ。TAGGGテロメア長アッセイキットは、テロメア制限フラグメント(TRF)アッセイを使用して平均テロメア長を定量するために使用され、再現性が高いです。ただし、これは高価な方法であり、このため、サンプル数が多い場合は日常的に採用されていません。ここでは、サザンブロットまたはTRF分析と非放射性化学発光ベースの検出を使用して、テロメア長を最適化して費用対効果の高い測定を行うための詳細なプロトコルについて説明します。

概要

テロメアは、染色体の末端に存在する反復DNA配列です。それらはTTAGGGのタンデムリピートを持ち、染色体をほつれと末端複製の問題の両方から保護することによってゲノムの完全性を維持します、それは3'オーバーハングの一部がDNAポリメラーゼ1,2によって複製できないことを意味します。短いテロメアは細胞の染色体異常を引き起こし、そのため細胞は複製老化3と呼ばれる段階で永久に停止します。短いテロメアは、ミトコンドリア機能障害4,5や細胞機能障害など、他の多くの問題も引き起こします。

DNAテロメアの繰り返しは、細胞が分裂すると失われ、年間平均25〜200 bpの損失6、一定数の分裂後に細胞老化が生じます6。老化は併存疾患の頻度が高くなり、テロメアの長さが短くなるのが特徴です7。Menderによって記述されているように、テロメア制限フラグメント(TRF)分析は非常に高価な方法です8。このため、ほとんどの研究ではテロメアの長さを定量化しながらは実施されていません。

現在、疫学研究の大部分は、テロメア長の定量的ポリメラーゼ連鎖反応(qPCR)ベースの測定を採用しています。ただし、qPCRベースの方法は、テロメアとシングルコピー遺伝子増幅産物の比率を測定するため、相対的な測定方法であり、絶対的なテロメア長ではありません。TRFプロトコルを使用したテロメア長測定は、サンプル中のテロメア長分布を測定でき、測定値はキロベース(kb)単位の絶対値で表すことができるため、ゴールドスタンダードの方法です。ただし、面倒で労働集約的でコストがかかるため、使用は制限されています。ここでは、化学発光ベースのTRFを使用したテロメア長測定に最適化されたプロトコルを紹介します。

TRF解析には、1)ゲノムDNA抽出のための細胞の培養、2)フェノール:クロロホルム:イソアミルアルコール(P:C:I)法を用いたゲノムDNA抽出、3)ゲノムDNAの制限酵素処理、4)アガロースゲル電気泳動、5)制限酵素処理DNA断片のサザンブロッティング、6)ハイブリダイゼーションおよび検出 による ハイブリダイゼーション、および検出の7つの主要なステップが含まれます。化学発光-固定化されたテロメアプローブは、アルカリホスファターゼの高感度化学発光基質、2-クロロ-5-(4-メトキシスピロ[1,2-ジオキセタン-3,2'-(5-クロロトリシクロ[3.3.1.13.7]デカン])-4-イル]-1-フェニルリン酸(CDP-Star)-およびこれらのテロメア塗抹標本から平均テロメアの長さと範囲の情報を得るための7)分析によって視覚化されます。

Access restricted. Please log in or start a trial to view this content.

プロトコル

注:以下のプロトコルで使用されるすべての試薬の詳細については、 材料の表 を参照してください。表 1 はラボ製の試薬と最適化された容量を記載し、 表2 は市販の試薬の使用濃度を示しています。

1. 細胞培養

  1. テロメア長を測定する細胞(ここでは卵巣腺癌細胞株であるA2780細胞を使用)を、10%ウシ胎児血清(FBS)、ストレプトマイシン、ペニシリン、およびアムホテリシンBを添加したダルベッコ改変イーグル培地(DMEM)完全培地で6cmのペトリ皿に維持します。細胞が80%〜100%コンフルエントになるまで、5%の二酸化炭素を含む加湿および制御された環境で37°Cでインキュベートします。
  2. 培地を取り出し、5 mLの1xリン酸緩衝生理食塩水(PBS)で洗浄します。
  3. 細胞を1 mLのトリプシン-エチレンジアミン四酢酸(EDTA)で処理し、37°Cで3〜5分間インキュベートして細胞を剥離します。
  4. 2 mLのDMEM完全培地を加えてトリプシンを不活性化し、遠心分離チューブに細胞を回収します。
  5. 細胞を2,348 × g で5分間ペレット化します。
  6. ペレットを1x PBSで洗浄し、2,348 × g で5分間遠心分離します。
  7. さらに使用するまでペレットを-80°Cで保管してください。
    注:細胞数は細胞株によって異なります。我々は、A2780細胞株の場合、約2.5×106 細胞を取得し、これはさらなる工程で使用される。

2. ゲノムDNAの分離

  1. 500 μLの溶解バッファー(10 mM tris-Cl、pH 8.0; 25 mM EDTA、pH 8.0; 100 mM NaCl; 0.5% w/v ドデシル硫酸ナトリウム)をセルペレットに加え、カットチップ(開口部直径2 mm以上)を使用して穏やかに混合します。調製したばかりのRNase Aを20 μg/mL加え、転倒させて穏やかに混合します。
  2. 37°Cで30分間インキュベートし、インキュベーション中にチューブを反転させることがあります。
  3. プロテイナーゼKを終濃度100 μg/mLまで加え、10回反転して穏やかに混合します。55°Cで2時間インキュベートします。インキュベーション中に一定の間隔(10分ごと)でチューブを反転させます。
  4. フェノール:クロロホルム:イソアミルアルコール試薬(25:24:1)500μLを加え、20回反転して穏やかに混合します。9,391 × g で室温(約25°C)で15分間遠心分離します。
    注: 図1A は、遠心分離後に得られた3つの層を示しています。
  5. 目に見える3つの層から粘性のある上部水層を取り除き、カットチップを使用して新しいチューブに入れ、等量のクロロホルムを追加します。穏やかな反転で20回混ぜます。
  6. チューブを9,391 × g で室温で15分間遠心分離します。
  7. 水層を回収し、NaClの終濃度が0.2Mになるように適量の5M NaClを添加する。
  8. 100%エタノールを2容量加えます。穏やかな反転で20〜25回混ぜます。室温で5分間、15,871 × g で遠心分離します。
  9. 上清を除去し、500μLの70%エタノールを加えてペレットを洗浄する。室温で5分間、15,871 × g で遠心分離します。
  10. 上清を除去し、ペレットを数分間風乾し、50 μLの滅菌ヌクレアーゼフリー水を加えます。DNAを室温で1〜2日間再水和させます。カットチップを使用して、ピペッティングで混合します。
  11. 紫外線(UV)分光光度法を使用してDNAの濃度を測定します。必要に応じて、滅菌ヌクレアーゼフリーの水を使用してサンプルを再希釈し、300〜500 ng / μLの最小濃度を取得します。
  12. DNAを1%アガロースゲル上で実行して、DNAの完全性を確認します(図1B)。
  13. 希釈したDNAは、さらに使用するまで-20°Cで保存してください。

3. ゲノムDNAの消化

  1. Rsa1(20 U)とHinf1(20 U)の酵素混合物を調製し、反応ごとに2 μLの制限酵素消化バッファーを追加します。
  2. DNAの総量が1.5μgになるように適量のゲノムDNAを取ります。滅菌ヌクレアーゼフリー水で容量を構成し、酵素添加後の総容量が20μLになるようにします。
  3. 軽くたたいてよく混ぜ、続いてパルススピンします。
  4. 混合物を37°Cで2時間インキュベートします。

4. アガロースゲル電気泳動

  1. 高品位アガロースを使用して、1xトリスアセテートEDTA(TAE)バッファー中で10 cm×15 cm 0.8%アガロースゲルを調製します。
  2. 消化された各ゲノムDNAサンプルに5 μLのローディング色素を加えて最終容量を25 μLにし、サンプルをゲルにロードします。
  3. 1 μLの分子マーカー(ラダー)、3 μLの滅菌ヌクレアーゼフリー水、および1 μLの5xローディング色素を使用して、分子マーカーミックスを調製します。
  4. サンプル数が多い場合(~10個)、サンプル数が5個以下の場合は片側のみに、ゲノムDNA消化サンプルの両面に5 μLの分子マーカーミックスをロードします。
  5. ゲルを5 V / cmで6時間実行します。実行が完了したら、ゲルの片隅にノッチを入れて、ローディング順序をマークします。
  6. ゲルを0.25 M HClに室温で10分間沈め、穏やかに攪拌します。
  7. ゲルを蒸留水で2回すすいでください。
  8. ゲルを0.5 M NaOHおよび1.5 M NaClの溶液に室温でそれぞれ15分間2回沈め、穏やかに攪拌することにより、DNAを変性させます。
  9. ゲルを蒸留水で2回すすいでください。
  10. ゲルを0.5 M tris-HClおよび3 M NaCl(pH 7.5)の溶液に室温で15分間2回沈め、穏やかに攪拌することにより、DNAを中和します。

5. サザンブロッティング

  1. サイズが10cm×12cmのナイロン膜を切り取り、ゲルと同じ位置に切り込みを入れます。
  2. 蒸留水に浸漬した後、20倍のクエン酸塩水ナトリウム(SSC)バッファーに浸してメンブレンを活性化します( 表1を参照)。
  3. 転送を設定します。
    1. 清潔なガラストレイを取り、別のトレイを逆さにして置きます。端が外側トレイのベースに触れるように、通常のろ紙を使用して芯を作成します。
    2. ろ紙の上にゲルを置きます。ノッチを重ねて活性ナイロンメンブレンをゲルの上にそっと置き、ガラス棒の上を転がして気泡を取り除きます。
    3. 9.5cmの2cmの山×11.5cmのセルロース濾紙を置き、続いて同じ寸法の通常のろ紙を6cmの山に置きます。このセットアップの上に重りを置き、下に均等な重量配分があるようにします。外側トレイに20x SSCバッファを入れます( 図2を参照)。
    4. 一晩の転送のためにセットアップを残してください。
  4. サザン転写後、転写されたDNAをUVトランスイルミネーターまたはUV架橋剤でUV架橋することによりメンブレン上に固定します。302 nm 8 Wランプを5分間、または254 nm 8 Wランプを2分間使用すると、これは約120 mJに相当します。DNAが転写される膜側がランプに面していることを確認してください。
  5. メンブレンを25 mLの2x SSCバッファーで2回洗浄します。
  6. 必要に応じて、ブロットを完全に乾燥させ、ホイルで緩く包んだ後、さらに処理するまで2〜8°Cで保存することにより、プロトコルを一時停止します。

6. ハイブリダイゼーションと化学発光検出

  1. プレハイブリダイゼーションバッファーを42°Cに予熱する。
    注:次の手順には、100 cm2 のブロットあたりに使用する溶液/バッファーの量が含まれます。
  2. メンブレンを10 mLのプレハイブリダイゼーションバッファー中で42°Cで1時間インキュベートし、プレハイブリダイゼーションのために穏やかに攪拌します。
  3. 予温したプレハイブリダイゼーションバッファー5 mLあたり0.5 μLのテロメアプローブを加えて、ハイブリダイゼーション溶液を作製します。
  4. ブロットを10 mLのハイブリダイゼーション溶液中で42°Cで3時間、穏やかに攪拌しながらインキュベートします。
  5. ブロットをストリンジェントなバッファー1(表1)で室温で2回、室温で10分間(各25 mL)穏やかに攪拌しながら洗浄します。
  6. ストリンジェントな緩衝液2(表1)を50°Cで30分間予熱する。
  7. ブロットをストリンジェントなバッファー2で2回、50°Cで15分間(各25 mL)穏やかに攪拌しながら洗浄します。
  8. 15 mLの洗浄バッファーで5分間すすぎ、RTで穏やかに攪拌します。
  9. メンブレンを、新たに調製した1xブロッキング溶液10 mL中で、室温で30分間、穏やかに攪拌しながらインキュベートします。
  10. アルカリホスファターゼ作動溶液( 表2を参照)と結合した10 mLの抗ジギオキシゲニン中でメンブレンをRTで30分間インキュベートし、穏やかに攪拌します。
  11. ブロットを洗浄バッファーで室温で15分間穏やかに攪拌しながら2回洗浄します。
  12. 10 mLの検出バッファー中で、穏やかな攪拌を行いながらRTで5分間インキュベートします。
  13. 余分な検出バッファーを取り除き、DNAを上向きにしてメンブレンをハイブリダイゼーションバッグまたはアセテートシート上に保ちます。1~1.5 mLの基質溶液をメンブレン上に滴下し、すぐに別のシートをその上に置き、RTで5分間インキュベートします。
  14. イメージングのために余分な基質溶液を絞り出します。
  15. ゲルドキュメンテーションイメージングシステムで約20分間ブロットを画像化し、異なる時点で複数の画像を収集します。さらに分析するには、不飽和画像を選択します。
    注意: 信号が弱い場合は、より長い時間イメージングを実行できます。

7. 分析

  1. 画像ファイルを取得したら、可能な限り最高の解像度(この場合は600 dpi)で.tif形式で公開用にエクスポートします。
  2. テロツールソフトウェアをインストールします。これを実行するには、特定のバージョンのMATLAB(無料で入手可能)が必要です。
  3. ソフトウェアを開き、右上の [画像ファイルのロード ]ボタンをクリックします。
  4. 画像が読み込まれたら、[ 画像を反転]をクリックして、画像の背景が黒になり、スミア/バンドが白になるようにします。
  5. ウェルから始まる上隅で画像をトリミングします。切り抜きを選択したら、その中を右クリックして[ 画像の切り抜き]を選択します。
  6. 画像がトリミングされたら、[車線の計算]をクリックして、 車線 検出が自動的に行われるようにします。
  7. 車線が正しく検出されない場合、たとえば、特定の車線がまったく検出されない場合、または余分な車線または一部の車線が検出された場合は、次のように車線調整を実行します。
    1. [車線の調整]をクリックし、開いたポップアップウィンドウで、必要に応じて 車線 を追加および/または調整し、[ 適用して閉じる]をクリックします。
  8. 車線を調整した後、各車線に赤い点が表示されていることを確認し、[はしごフィット]ボタンを使用してはしごを調整し、両方の はしご 車線のピークの数が同じ位置にあることを確認します。[ 極値の削除] ボタンを使用して、余分なピークを削除します。
  9. はしごを調整したら、[ レーンプロファイル]を選択し、[ はしごフィット]をクリックして、[ 多項式フィット]を選択します。
  10. ソフトウェアが推奨するようにトレンド ラインをクリックし、次のオプションで [修正済み ]を選択します。
  11. [ Get Results] をクリックすると、結果が表として表示され、 平均TRF 行はそれぞれのレーンサンプルのテロメア長測定値になります。
  12. [すべて保存]をクリックして、結果をスプレッドシートの形式で 保存 します。

Access restricted. Please log in or start a trial to view this content.

結果

抽出したゲノムDNA(gDNA)を1%アガロースゲルで実行したところ、 図1Bに示すように良好な完全性を示し、サンプルをTRFのさらなるダウンストリーム処理に使用できることを示しています。次いで、TRFアッセイは、各工程で必要な溶液の量を改変することによって実施した(表 1 および 表2を参照されたい)。TRF信号ははっきりと見えました(

Access restricted. Please log in or start a trial to view this content.

ディスカッション

サザンブロッティングを用いたテロメア長測定のための非放射性化学発光ベースの方法の詳細な手順について説明します。このプロトコルは、結果の品質を損なうことなく、いくつかの試薬を賢明に使用できるようにテストされています。プレハイブリダイゼーションおよびハイブリダイゼーションバッファーは、最大5回まで再利用することができる。酵素濃度は、結果に影響を与えること...

Access restricted. Please log in or start a trial to view this content.

開示事項

著者には利益相反はありません。

謝辞

プロトコルの最適化を最初に手伝ってくれたPrachi Shahさんに感謝します。A2780卵巣がん細胞株を提供してくださったManoj Garg博士に感謝します。EKは、バイオテクノロジー部門(No. BT/RLF/Re-entry/06/2015)、科学技術部門(ECR/2018/002117)、およびNMIMSシードグラント(IO 401405)からの研究助成金によってサポートされています。

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
Cell Line
A2780 (Ovarian adenocarcinoma cell line)Received as a gift
Equipment
ChemiDoc XRS+ (for imaging and UV cross linking)BioradUniversal hood II (721BR14277)
Nanodrop (Epoch 2)BiotekEPOCH2
Software
TeloToolVersion 1.3
Materials
Acetic AcidMolychem64-19-7
AgaroseMP180720
Amphotericin BGibco, ThermoFisher Scientific, USA15240062
DMEM HyClone, Cytiva, USASH30243.01
Ethylenediamine tetraacetic acid Molychem6381-92-6
HI FBSGibco, ThermoFisher Scientific, USA10270106
HClMolychem76-47-01-0
NaClMolychem7647-14-5
NaOHMolychem1310-73-2
Nylon membraneSigma11209299001
PenicillinGibco, ThermoFisher Scientific, USA15240062
Sodium dodecyl sulfateAffymetrix151-21-3
StreptomycinGibco, ThermoFisher Scientific, USA15240062
TrisBIORAD77-86-1
Tris HClSigma Aldrich1185-53-1
Whatman paperGE healthcare lifesciences1001-917
Reagents
1 kb ladderNEBN3232S
20x SSCInvitrogen15557-036
Anti DIG APTelo TAGGG Telomere Length Assay kit12209136001
Blocking solution 10xTelo TAGGG Telomere Length Assay kit12209136001
Cutsmart BufferNEBB6004
Detection buffer 10xTelo TAGGG Telomere Length Assay kit12209136001
Dig easy hybTelo TAGGG Telomere Length Assay kit12209136001
Digestion BufferTelo TAGGG Telomere Length Assay kit12209136001
Hinf 1Telo TAGGG Telomere Length Assay kit12209136001
Hinf 1 (alternative to kit)NEBR0155T
Loading DyeBIOLABSN3231S
Maleic acid buffer 10xTelo TAGGG Telomere Length Assay kit12209136001
Molecular markerTelo TAGGG Telomere Length Assay kit12209136001
ProbeTelo TAGGG Telomere Length Assay kit12209136001
Rsa 1Telo TAGGG Telomere Length Assay kit12209136001
Rsa 1 (alternative to kit)NEBR0167L
SubstrateTelo TAGGG Telomere Length Assay kit12209136001
Wash bufferTelo TAGGG Telomere Length Assay kit12209136001

参考文献

  1. Greider, C. W. Telomere length regulation. Annual Review of Biochemistry. 65, 337-365 (1996).
  2. Valdes, A. M., et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 366 (9486), 662-664 (2005).
  3. Allsopp, R. C., et al. Telomere length predicts replicative capacity of human fibroblasts. Proceedings of the National Academy of Sciences. 89 (21), 10114-10118 (1992).
  4. Epel, E. S., et al. Accelerated telomere shortening in response to life stress. Proceedings of the National Academy of Sciences. 101 (49), 17312-17315 (2004).
  5. Canela, A., Vera, E., Klatt, P., Blasco, M. A. High-throughput telomere length quantification by FISH and its application to human population studies. Proceedings of the National Academy of Sciences. 104 (13), 5300-5305 (2007).
  6. Révész, D., Milaneschi, Y., Verhoeven, J. E., Penninx, B. W. Telomere length as a marker of cellular aging is associated with prevalence and progression of metabolic syndrome. The Journal of Clinical Endocrinology and Metabolism. 99 (12), 4607-4615 (2014).
  7. Rizvi, S., Raza, S. T., Mahdi, F. Telomere length variations in aging and age-related diseases. Current Aging Science. 7 (3), 161-167 (2014).
  8. Mender, I., Shay, J. W. Telomere restriction fragment (TRF) analysis. Bio-Protocol. 5 (22), e1658(2015).
  9. Zhu, Y., Liu, X., Ding, X., Wang, F., Geng, X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology. 20 (1), 1-16 (2019).
  10. Göhring, J., Fulcher, N., Jacak, J., Riha, K. TeloTool: a new tool for telomere length measurement from terminal restriction fragment analysis with improved probe intensity correction. Nucleic Acids Research. 42 (3), 21(2014).
  11. Jenkins, F. J., Kerr, C. M., Fouquerel, E., Bovbjerg, D. H., Opresko, P. L. Modified terminal restriction fragment analysis for quantifying telomere length using in-gel hybridization. Journal of Visualized Experiments. (125), e56001(2017).
  12. Fojtová, M., Fajkus, P., Sováková, P. P., Fajkus, J. Terminal restriction fragments (TRF) method to analyze telomere lengths. Bio-protocol. 5 (23), e1671(2015).
  13. Kimura, M., et al. Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths. Nature Protocols. 5 (9), 1596-1607 (2010).
  14. Trigodet, F., et al. High molecular weight DNA extraction strategies for long-read sequencing of complex metagenomes. Molecular Ecology Resources. 22 (5), 1786-1802 (2022).
  15. Lai, T. P., Wright, W. E., Shay, J. W. Comparison of telomere length measurement methods. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 373 (1741), 20160451(2018).
  16. Mochida, A., et al. Telomere size and telomerase activity in Epstein-Barr virus (EBV)-positive and EBV-negative Burkitt's lymphoma cell lines. Archives of Virology. 150 (10), 2139-2150 (2005).
  17. Gupta, N., et al. Replicative senescence, telomere shortening and cell proliferation rate in Gaddi goat's skin fibroblast cell line. Cell Biology International. 31 (10), 1257-1264 (2007).
  18. Michaeli, J., et al. Leukocyte telomere length correlates with extended female fertility. Cells. 11 (3), 513(2022).
  19. Lesmana, A., et al. Continuous reference intervals for leukocyte telomere length in children: the method matters. Clinical Chemistry and Laboratory Medicine. 59 (7), 1279-1288 (2021).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

JoVE 194

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved