サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This article details the manufacturing process for chimeric antigen receptor T cells for clinical use, specifically using an automated cell processor capable of performing viral transduction and cultivation of T cells. We provide recommendations and describe pitfalls that should be considered during the process development and implementation of an early-phase clinical trial.

Abstract

Chimeric antigen receptor (CAR)-T cells represent a promising immunotherapeutic approach for the treatment of various malignant and non-malignant diseases. CAR-T cells are genetically modified T cells that express a chimeric protein that recognizes and binds to a cell surface target, resulting in the killing of the target cell. Traditional CAR-T cell manufacturing methods are labor-intensive, expensive, and may carry the risk of contamination. The CliniMACS Prodigy, an automated cell processor, allows for manufacturing cell therapy products at a clinical scale in a closed system, minimizing the risk of contamination. Processing occurs semi-automatically under the control of a computer and thus minimizes human involvement in the process, which saves time and reduces variability and errors.

This manuscript and video describes the T cell transduction (TCT) process for manufacturing CAR-T cells using this processor. The TCT process involves CD4+/CD8+ T cell enrichment, activation, transduction with a viral vector, expansion, and harvest. Using the Activity Matrix, a functionality that allows ordering and timing of these steps, the TCT process can be customized extensively. We provide a walk-through of CAR-T cell manufacturing in compliance with current Good Manufacturing Practice (cGMP) and discuss required release testing and preclinical experiments that will support an Investigational New Drug (IND) application. We demonstrate the feasibility and discuss the advantages and disadvantages of using a semi-automatic process for clinical CAR-T cell manufacturing. Finally, we describe an ongoing investigator-initiated clinical trial that targets pediatric B-cell malignancies [NCT05480449] as an example of how this manufacturing process can be applied in a clinical setting.

Introduction

Adoptive transfer of T cells engineered to express a chimeric antigen receptor (CAR) has shown remarkable efficacy in treating patients with refractory B-cell malignancies1,2,3,4,5. However, the traditional manufacturing methods for CAR-T cells are labor-intensive, time-consuming, and require highly trained technicians to carry out highly specialized steps. For example, the traditional manufacturing process of an autologous CAR-T cell product involves density gradient centrifugation, elutriation or mag....

Protocol

All research was performed in compliance with institutional guidelines with approval by the hospital's Institutional Review Board (IRB), and all subjects have provided informed consent for publication of the data collected within the context of the trial.
NOTE: The first section of the Protocol provides a high-level overview of the CAR-T manufacturing process. The remaining sections provide the step-by-step instructions. The protocol describes the workflow using TCT software version 1.4, which is the .......

Representative Results

Results from the initial three CAR-T manufacturing runs of the NCT05480449 trial are presented below in Table 3. The starting material, vector, culture cytokines, and AB serum concentrations were kept consistent for each run. Products were harvested on day 7 or 8. The average daily cell growth was 46% (increase in total cell count), indicating that the TCT process was effective in promoting cell expansion. These results suggest that the processor can produce consistent and reproducible CAR-T cell product.......

Discussion

CAR-T cell therapy has emerged as a promising treatment approach for B-cell and other malignancies. However, traditional CAR-T cell manufacturing methods have several limitations, such as high cost, labor-intensive production, and open steps that increase the risk of contamination. Recently, several semi-automated platforms, including the Miltenyi CliniMACS Prodigy (the "processor"), have emerged to address these limitations. The T cell transduction (TCT) process, integrated into the processor described in this m.......

Acknowledgements

The authors would like to acknowledge the contributions of several individuals and organizations to this work. The Cell and Gene Therapy Laboratory and the Penn Translational and Correlative Studies Laboratory provided valuable assistance with process development and preparation for IND submissions. Melissa Varghese and Amanda DiNofia contributed to the process development and preparation for IND submissions that underly this manuscript. This work was supported by an Acceleration Grant of the Cell and Gene Therapy Collaborative of the Children's Hospital of Philadelphia. The authors would also like to thank Miltenyi Biotec for their technical and research sup....

Materials

NameCompanyCatalog NumberComments
12 x 75 borosilicate tubesCharles RiverTL1000
20 mL Reagent BagMiltenyi Biotec170-076-631
50 mL Conical TubeFisher05-539-10
150 mL Transfer SetFenwal4R2001
2,000 mL Transfer SetFenwal4R2041
7AADFisher ScientificBDB559925
Alcohol PrepTyco/Healthcare
Bag AccessMedline2300E-0500
CD19 APC-Vio770 REAfinityMiltenyi Biotec130-113-643
CD19 CAR Detection Reagent BiotinMiltenyi Biotec130-129-550
CD19 PEBD555413
CD3 APCBD340440
CD4 VioBright FITC REAfinityMiltenyi Biotec130-113-229
CD45 VioBlue REAfinityMiltenyi Biotec130-110-637
CD8 APC-Vio770 REAfinityMiltenyi Biotec130-110-681
Cellometer Reference Beads 10umNexcelomB10-02-020
Cellometer Reference Beads 15umNexcelomB15-02-010
Cellometer Reference Beads 5umNexcelomB05-02-050
Cellometer SlidesNexcelomCHT4-SD100-002
CliniMACS CD4 GMP MicroBeadsMiltenyi Biotec276-01The CD4 reagent
CliniMACS CD8 GMP MicroBeadsMiltenyi Biotec275-01The CD8 reagent
CliniMACS PBS/EDTA BufferMiltenyi Biotec130-021-201The buffer
DMSOOrigenCP-10
Freezing Bag 50 mLMiltenyi Biotec200-074-400
Freezing Vial, 1.8 mLNunc12565171N
Freezing Vial, 4.5 mLNunc12565161N
Human AB serumValley BiomedicalSterile filtered, heat inactivated
Human Serum Albumin 25%Grifols68516-5216-1
Human Serum Albumin 5%Grifols68516-5214-1
MACS GMP Recombinant Human IL-2Miltenyi Biotec170-076-148The cytokines
MACS GMP T Cell TransActMiltenyi Biotec200-076-202The activation reagent
MycoSeq Mycoplasma Detection KitLife Technologies4460623
Needles, Hypodermic 14GMedlineSWD200573
Needles, SlideSafe 18GBDB-D305918
Pipet tips, 2-200 μL, individually wrappedEppendorf022492209
Pipet tips, 50-1000 μL, individually wrappedEppendorf022492225
Pipets 10 mLFisher13-678-27F
Pipets 25 mLFisher13-675-30
Pipets 5 mLFisher13-678-27E
Plasmalyte-ABaxter2B2544XThe electrolyte solution
Prodigy TS520 Tubing SetMiltenyi Biotec170-076- 600The tubing set
Sterile FieldMedlineNON21001
Streptavidin PE-Vio770Miltenyi Biotec130-106-793
Syringe 1 mLBD309628
Syringe 10 mLBD302995
Syringe 3 mLBD309657
Syringe 30 mLBD302832
Syringe 50 mLBD309653
TexMACS GMP MediumMiltenyi Biotec170-076-306The medium
Triple Sampling AdapterMiltenyi Biotec170-076-609
Viral VectorCHOP Clinical Vector CorehuCART19
Equipment
Biological Safety CabinetThe Baker Co
Cellometer Auto 2000Nexcelom
CliniMACS ProdigyMiltenyi Biotec200-075-301The processor
Controlled Rate FreezerPlaner/Kryosave
Endosafe nexgen-PTS150KCharles River
Mettler BalanceMettler
Refrigerated CentrifugeThermo Fisher
Refrigerated CentrifugeFisher Sci
SCD Sterile Tubing WelderTerumo
Sebra Tube SealerSebra
VarithermBarkeyThe dry thaw device
XN-330 Hematology AnalyzerSysmex

References

  1. Maude, S. L., et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. New England Journal of Medicine. 378 (5), 439-448 (2018).
  2. Shah, N. N., et al.

Explore More Articles

CAR T Cell ManufacturingAutomated Cell ProcessingClosed SystemSemi automatedCustomizable ProtocolCost effectiveCell And Gene TherapyImmunotherapyCliniMACS ProdigyT Cell TransductionCGMP ComplianceIND Application

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved