サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We describe a facile procedure for the single-copy chromosomal complementation of an efflux pump gene using a mini-Tn7-based expression system into an engineered efflux-deficient strain of Acinetobacter baumannii. This precise genetic tool allows for controlled gene expression, which is key for the characterization of efflux pumps in multidrug resistant pathogens.

Abstract

Acinetobacter baumannii is recognized as a challenging Gram-negative pathogen due to its widespread resistance to antibiotics. It is crucial to comprehend the mechanisms behind this resistance to design new and effective therapeutic options. Unfortunately, our ability to investigate these mechanisms in A. baumannii is hindered by the paucity of suitable genetic manipulation tools. Here, we describe methods for utilizing a chromosomal mini-Tn7-based system to achieve single-copy gene expression in an A. baumannii strain that lacks functional RND-type efflux mechanisms. Single-copy insertion and inducible efflux pump expression are quite advantageous, as the presence of RND efflux operons on high-copy number plasmids is often poorly tolerated by bacterial cells. Moreover, incorporating recombinant mini-Tn7 expression vectors into the chromosome of a surrogate A. baumannii host with increased efflux sensitivity helps circumvent interference from other efflux pumps. This system is valuable not only for investigating uncharacterized bacterial efflux pumps but also for assessing the effectiveness of potential inhibitors targeting these pumps.

Introduction

Acinetobacter baumannii is a World Health Organization top priority pathogen due to its encompassing resistance to all classes of antibiotics1. It is an opportunistic pathogen mostly affecting hospitalized, injured, or immunocompromised people. A. baumannii largely evades antibiotics via efflux pumps, the most relevant being the Resistance-Nodulation-Division (RND) family of exporters2. Understanding how these efflux pumps work mechanistically will allow one to develop targeted therapeutic options.

One common way that cellular processes can be specifically distinguis....

Protocol

1. Experimental preparation

  1. Purify the plasmid pUC18T-mini-Tn7T-LAC-Gm9 (insertion plasmid, Figure 2A) with the gene of interest.
    NOTE: Here, the gene of interest is adeIJK. The final plasmid concentration should be ≥100 ng/µL.
  2. Purify the helper plasmid (pTNS2)9 and the excision plasmid (pFLP2ab)6 (Figure 2B.......

Representative Results

The chromosomal insertion procedure takes only 2 h total across 3 days to see a result-colonies growing on a selective agar plate (Figure 1A-C). The expected number of colonies on the transformation plate is strain dependent: one may see 20-30 or even hundreds of colonies as insertion of Tn7 at attTn7 sites is specific and efficient9. Patching transformation plate colonies onto selective media (Figure 4A<.......

Discussion

Even though this procedure for the chromosomal insertion of an inducible single-copy gene expression system in A. baumannii is technically straightforward and not labor-intensive, there are a few important steps that need to be emphasized. First, preparation of the competent cells needs to be done on ice as much as possible as the cells become fragile during the replacement of the media with ice-cold water. Ideally, the centrifugation steps are performed at 4 °C, but centrifugation at room temperature is ac.......

Acknowledgements

This work was supported by a Discovery Grant from the Natural Science and Engineering Council of Canada to AK. The schematics used in the figures are created with BioRender.com.

....

Materials

NameCompanyCatalog NumberComments
0.2 mL PCR tubeVWR20170-012For colony boil preparations and PCR reactions
1.5 mL microfuge tubesSarstedt72-690-301General use
13-mL culture tubes, PyrexFisher14-957KLiquid culture vessels
6x DNA loading bufferFroggabioLD010Agarose gel electrophoresis sample loading dye
Acetic acid, glacialFisher351271-212Agarose gel running buffer component
AgarBioshopAGR003Solid growth media
AgaroseBioBasicD0012Electrophoretic separation of PCR reaction products; used at a concentration of 0.8–2%
Agarose gel electrophoresis unitFisher29-237-54Agarose gel electrophoresis; separation of PCR reaction products
CarbenicillinFisher50841231Selective media
Culture tube closuresFisher13-684-138Stainless steel closure for 13-mL culture tubes
Deoxynucleotide triphosphate (dNTP) setBiobasicDD0058PCR reaction component; supplied as 100 mM each dATP, dCTP, dGTP, dTTP; mixed and diluted for 10 mM each dNTP
Dry bath/block heaterFisher88860023Isotemp digital dry bath for boil preparations
Electroporation cuvettesVWR89047-2082 mm electroporation cuvettes with round cap
ElectroporatorCole Parmer940000009110 VAC, 60 Hz electroporator
Ethidium bromideFisherBP102-1Visualization of PCR reaction products and DNA marker in agarose gel
Ethylenediaminetetraacetic acid (EDTA)VWRCA-EM4050Agarose gel running buffer component
GentamicinBiobasicGB0217For the preparation of selective media
GlycerolFisherG33Preparation of bacterial stocks for long-term storage in an ultra-low freezer
Incubator (shaking)New Brunswick ScientificM1352-0000Excella E24 Incubator Shaker for liquid culture growth
Incubator (static)Fisher11-690-550DIsotemp Incubator Oven Model 550D for solid (LB agar) culture growth
Inoculation loopSarstedt86.1562.050Streaking colonies onto agar plates
Inoculation spreaderSarstedt86.1569.005Spreading of culture onto agar plates
Lysogeny broth (LB) broth, LennoxFisherBP1427Liquid growth media (20 g/L: 5 g/L sodium chloride, 10 g/L tryptone, 5 g/L yeast extract)
MicrofugeFisher75002431Sorvall Legend Micro 17 for centrifugation of samples
Mini-centrifugeFisherS67601BCentrifugation of 0.2 mL PCR tubes
Petri dishesSPL Life Sciences10090For solid growth media (agar plates): 90 x 15 mm
Pipettes MandelVariousGilson single channel pipettes (P10, P20, P200, P1000)
Power supplyBiorad1645050PowerPac Basic power supply for electrophoresis
PrimersIDTNAPCR reaction component; specific to gene of interest; prepared at 100 μM as directed on the product specification sheet
SucroseBioBasicSB0498For the preparation of counterselective media for removal of the pFLP2ab plasmid from transformed A. baumannii
Taq DNA polymeraseFroggaBioT-500PCR reaction component; polymerase supplied with a 10x buffer
Thermal cyclerBiorad1861096Model T100 for PCR
ToothpicksFisherS24559For patching colonies onto agar plates
Trizma baseSigmaT1503Agarose gel running buffer component
Ultrapure waterMillipore SigmaZLXLSD51040MilliQ water purification system: ultra pure water for media and solution preparation, and cell washing
Wide range DNA markerBiobasicM103R-2Size determination of PCR products on an agarose gel
Wooden inoculating sticksFisher29-801-02Inoculating cultures with colonies from agar plates

References

  1. Prioritization of pathogens to guide research, discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. World Health Organization Available from: https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12 (2017)
  2. Kornelsen, V., Kumar, A. Update on multidrug resistance efflux pumps in Acinetobacter spp.

Explore More Articles

Acinetobacter BaumanniiMultidrug ResistanceEfflux PumpsRND type EffluxSingle copy Gene ExpressionMini Tn7 SystemEfflux deficient Bacterial StrainCharacterization Of Efflux SystemsAntibiotic Resistance MechanismsGenetic Manipulation Tools

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved