Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

In this publication, we describe a rapid and convenient procedure for isolating and culturing primary pancreatic acinar cells from the murine pancreas. This method constitutes a valuable approach to study the physiology of fresh primary normal/untransformed exocrine pancreatic cells.

Streszczenie

This protocol permits rapid isolation (in less than 1 hr) of murine pancreatic acini, making it possible to maintain them in culture for more than one week. More than 20 x 106 acinar cells can be obtained from a single murine pancreas. This protocol offers the possibility to independently process as many as 10 pancreases in parallel. Because it preserves acinar architecture, this model is well suited for studying the physiology of the exocrine pancreas in vitro in contrast to cell lines established from pancreatic tumors, which display many genetic alterations resulting in partial or total loss of their acinar differentiation.

Wprowadzenie

A frequently encountered problem for research laboratories working on exocrine pancreatic tissue is the difficulty of cultivating acinar cells in vitro for a period of time long enough to allow a long-term experiment.

One factor impeding development of such culture systems is the intrinsic sensitivity of pancreatic tissue to experimental manipulation due to the high content in glycolytic, proteolytic, and lipolytic enzymes, which literally digest the pancreatic tissue when they are released during the isolation of pancreatic cells.

A second factor is the remarkable in vitro plasticity of acinar cells, which tend to lose their secretory characteristics and transdifferentiate to other mature cells, such as pancreatic ductal cells or hepatocyte-like cells 1. In vitro, this cell plasticity varies with the experimental conditions (such as culture medium composition) 2 and introduces a degree of complexity into the design of appropriate culture conditions for exocrine pancreatic cells 1.

Several methods have been developed for the isolation and culture of acinar cells, first from the guinea pig pancreas 3-5. Initially, those protocols involved digestion of pancreatic tissue with collagenase, chymotrypsin, and a protease cocktail, with ultimate isolation by vigorous mechanical dissociation. The pancreatic cells isolated in this way displayed abnormal structural and functional characteristics, notably a loss of apical structures and significant damage to their membrane receptors. Isolated cells remained viable for only 1 or 2 days.

Preparation of dispersed acini maintains their intra- and intercellular architecture, preserving cell membranes, limiting damage to surface receptors, and thus improving exocrine secretion in response to secretagogues 6-8. As a result, this method offers the major advantage of extending acinar cell viability to 7-10 days in vitro. Furthermore, this method is currently preferred to acinar cell isolation 9-12 because maintenance of intercellular contacts, including cell coupling by gap junctions, is an essential determinant of the exocrine pancreatic acinar cell phenotype 13.

As the dedifferentiation of acinar cells and their transdifferentiation to ductal cells is one of the proposed mechanisms for the genesis of aggressive exocrine pancreatic cancers 14, the dispersed acini model is also an adequate system to study pancreatic plasticity and its subsequent molecular mechanisms. Furthermore, in combination with the use of genetically modified animals 15,16 and the development of gene transfer techniques (adenoviral 2 or lentiviral transduction, use of nanoparticles, etc), this in vitro primary acinar cell model can be very useful in determining how various genetic dysfunctions affect the regulation of acinar cell differentiation or dedifferentiation and should provide better understanding of the molecular events responsible for the onset of pancreatitis, precancerous lesions, and changes in cell plasticity.

Isolation of dispersed acini is the approach we use in our laboratory to culture pancreatic acinar cells. We here describe and discuss the method used. It involves enzymatic dissociation of pancreatic tissue (with a bacterial collagenase) coupled to mechanical disruption without dissociation of acinar cells. While most protocols involve culturing the acini, either in suspension or on specially treated plastic substrates, we grow them in suspension only briefly (for 24 hr), seeding them afterwards onto matrix scaffolds if prolonged cell culture is required.

This protocol allows rapid isolation (in less than 1 hr) of dispersed pancreatic acini, sustainable for more than one week in culture. It allows isolation of more than 20 x 106 acinar cells per mouse pancreas. Its simplicity makes it possible to process independently as many as 10 pancreases in parallel. By maintaining the intra- and intercellular architecture of acini and thus the acinar phenotype of isolated primary cells, this model constitutes a system of choice for the study of transdifferentiation mechanisms, as all other exocrine pancreatic models currently available are derived from pancreatic tumors displaying many genetic alterations leading to cellular transformation.

Protokół

All procedures were approved by an ethic committee under regulatory of governmental authority ("Comité d'Evaluation Commun au Centre Léon Bérard, à l'Animalerie de transit de l'ENS, au PBES et au laboratoire P4" (CECCAPP)). Mice were maintained in a specific pathogen-free animal facility at the "Plateforme AniCan, Centre Léon Bérard" (Lyon, France) and handled in compliance with the institutional guidelines.

A schematic representation of the procedure is shown in Figure 1.

1. Pancreas Dissection and Dilaceration (Day 0)

A very rapid dissection is critical for an optimal yield of extraction and to insure a good viability of cells in culture. In order to reduce the time needed for pancreas isolation, all instruments and equipment must be ready before the mouse euthanasia.

  1. Euthanize mouse by CO2 asphyxiation or cervical dislocation.

From this step, all procedures have to be performed under a sterile atmosphere (microbiological safety cabinet, level II) with sterile dissection equipment.

  1. Fix the mouse and spray the mouse abdomen with 70% ethanol. With any dissecting scissors and forceps, make a V-shaped incision at the genital area and continue it up to the diaphragm to open completely the abdominal cavity.
  2. Position the liver lobes against the diaphragm; they should remain there if the body cavity is open far enough. Pull the gut and the colon outside the abdominal cavity to your left, and find the rectum. With a pair of curved forceps and dissecting scissors, grab and section the rectum.
  3. With the same pair of forceps, carefully unroll entirely the bowel from the rectum to the stomach by pulling the intestine on your left.

At this step, the pancreas can be distinguished as a small strip between the stomach and the beginning of the bowel. Its ligations with the spleen remain intact.

  1. Using Noyes scissors and a pair of forceps, carefully cut the pancreas along the bowel and liberate it with the spleen from the rest of the digestive tract.
  2. Grab the spleen and section the pancreas attached to it (Figure 2).

At this step, be sure that no mesenteric fat tissue and/or other adjacent tissue (spleen, bowel, etc) could be collected with the pancreas, to avoid cellular contamination.

For the rest of the procedure, all buffers must be prepared without calcium ion Ca2+ chelators to avoid the complete dissociation of the exocrine pancreatic tissue in single acinar cells.

  1. Rinse the pancreas twice in Hank's Balanced Salt Solution (HBSS) 1x.

At this step, as fat tissue will float contrary to pancreas that will sink, it is easily possible to visualize and rapidly remove the contaminant white adipose tissue still attached to pancreas.

If the pancreas needs to be transported to the cell culture facility, it must be kept on ice in HBSS 1x.

  1. Transfer the pancreas in a sterile Petri dish containing 5 ml of HBSS 1x. Using Noyes scissors and a scalpel, slice the pancreas in small pieces of 1 to 3 mm3 (Figure 3A).

2. Enzymatic and Mechanical Dissociations of Pancreas (Day 0)

  1. Transfer them into a sterile 50 ml polypropylene tube.
  2. Centrifuge for 2 min at 450 x g and 4 °C. Aspirate and discard the supernatant to remove cell fragments and blood cells.
  3. Add 10 ml of collagenase IA solution (HBSS 1x containing 10 mM HEPES, 200 U/ml of collagenase IA, and 0.25 mg/ml of trypsin inhibitor) to pancreas sections. Using a 25 ml serological pipette, transfer them to a 25 cm2 flask. Incubate it for 20-30 min at 37 °C. During this time (every 5 min), perform a mechanical dissociation by energetically moving back-and-forth the pancreas fragments about ten times, in sterile pipettes of decreasing size (25, 10, and 5 ml serological pipettes).

At this step, it is essential to frequently monitor the extent of the enzymatic dissociation of pancreatic sections.

  1. When the pancreatic tissue seems to be well-dissociated (according to the disappearance of pancreatic fragments and to the increased turbidity of the solution) (Figure 3B), stop the enzymatic reaction by adding 10 ml of cold buffered washing solution (HBSS 1x containing 5 % Fetal Bovine Serum (FBS) and 10 mM HEPES).
  2. Transfer it into a sterile 50 ml polypropylene tube and centrifuge for 2 min at 450 x g and 4 °C. Carefully aspirate and discard the supernatant to remove the collagenase IA solution.
  3. Resuspend and wash the pellet with 10 ml of buffered washing solution. Centrifuge for 3 min at 450 x g and 4 °C. Carefully aspirate and discard the supernatant. Repeat this step two more times.

3. Filtration and Seeding of Dispersed Acini (Day 0)

  1. Resuspend the cell pellet in 7 ml of Waymouth's medium containing 2.5 % FBS, 1 % Penicillin-Streptomycin mixture (PS), 0.25 mg/ml of trypsin inhibitor, and 25 ng/ml of recombinant human Epidermal Growth Factor (EGF).
  2. Filtrate the cell mixture by allowing it to pass through a 100 μm filter to retain the non-digested fragments (ducts, blood vessels, and Langerhans islets). Pancreatic acinar structures (acinus of 10-15 cells) pass through.
  3. Rinse the filter with 6 ml of Waymouth's medium containing FBS, PS, trypsin inhibitor, and EGF.

After this step, the cells have to be treated very carefully, to avoid any acini dissociation.

  1. Seed the isolated acini in a 6-well culture dish (2 ml per well) (Figure 3C). Culture them at 37 °C under 5% (v/v) CO2 atmosphere.

After this step, the acinar cells are cultured in suspension.

4. Acinar Cell Culture (Day 1 to 10)

  1. Twenty-four hours after, transfer the acini (in suspension) into a new 6-well culture dish, to eliminate the contaminant cells and cellular remnants that have adhered overnight (Figure 4).

If the cell culture needs to be extended for several days or if the experimental conditions require cells grown in monolayer, it is recommended to transfer and seed acini on matrix scaffolds.

  1. The day before seeding on matrix support (Day 0), coat a 6-well culture dish with type I collagen (5 μg/cm2). Add 1 ml of type I collagen solution (50 μg/ml in 0.02 M acetic acid, 0.2 μm-filtered) to each well and allow it to passively adsorb on plastic, during 1 hr at 37 °C (or overnight at 4 °C).
  2. Aspirate the type I collagen solution and rinse the coated well twice with Phosphate-Buffered Saline 1x.
  3. Allow the coated well to dry (under a microbiological safety cabinet) at least 12 hr before use.
  4. Transfer the isolated primary acini (obtained at Step 4.1) into the type I collagen-coated 6-well culture dish and culture them in the same conditions as previously described (at 37 °C under 5% (v/v) CO2 atmosphere). The cells adhere to the type I collagen substrate for 2 days.
  5. On Day 3, change the culture medium to eliminate non-viable cells that have not adhered. With time in culture, the cells will progressively spread on the collagen-containing support. Change the culture medium every 3 days (Figure 5).

The isolated acinar cells obtained can be counted, after a complete mechanical dissociation by using a Thoma cell counting chamber. Note that isolated acinar cells cannot be maintained in culture afterwards.

The quality of the acinar culture obtained can be controlled by checking the expression of acinar specific markers such as Trypsinogen, Pancreas Transcription Factor 1 subunit Alpha, or Carboxypeptidase A1 (by immunocytochemistry or immunofluorescence experiments).

Wyniki

Figure 1 schematizes the "dispersed" acini method for primary acinar cells isolation. The critical steps, which have to be strictly respected during the protocol, are described in the discussion part.

To facilitate its removal, the pancreas has to be collected from the abdomen along with the attached spleen (Figure 2). Both organs need to be cut apart, and the residual fat tissue that could be still attached to the pancreas must be removed (Step 1.6).

...

Dyskusje

In this protocol, we describe a procedure for isolating pancreatic acinar cells. This method makes possible to isolate more than 20 x 106 acinar cells per animal in less than 1 hr. Thanks to its rapid and simple implementation (as many as 10 pancreases can be independently processed per experiment in parallel), this protocol appears as a good compromise between existing isolation methods 3-5,9-12,17 .

Critical steps/Trouble-shooting

Ujawnienia

The authors declare that they have no competing financial interests.

Podziękowania

We thank the staff of AniCan (CRCL, Lyon) for their technical assistance with animal care. This work was supported by the Institut National de la Santé Et de la Recherche Médicale (INSERM Avenir Program), the Ligue Nationale Contre le Cancer, by the Association pour la Recherche sur le Cancer, by the Institut National du Cancer, and by fellowships from the Ligue Nationale Contre le Cancer (JG), from the Institut National du Cancer (JG), from the Ministère de l'Enseignement Supérieur et de la Recherche of France (RMP and DFV) and from the Association pour la Recherche sur le Cancer (DFV).

Materiały

NameCompanyCatalog NumberComments
Name of Reagent/MaterialCompanyCatalog NumberComments
0.2 μm filterDutscher146560
10 ml serological pipettesBeckton Dickinson357551
100 μm filterBeckton Dickinson352360
100 mm Petri dishBeckton Dickinson353003
1000 μl filter tipsStarlabS1122-1830
20 μl filter tipsStarlabS1120-1810
200 μl filter tipsStarlabS1120-8810
25 ml serological pipettesBeckton Dickinson357535
5 ml serological pipettesBeckton Dickinson357543
50 ml polypropylene tubeBeckton Dickinson352070
6-well plateBeckton Dickinson353046
Acetic acid 100%VWR BDH Prolabo20104.298
Collagenase IASigma-AldrichC2676
Curved forceps, Dumont #7World Precision Instruments14188To sterilize before use
Dissecting scissors, straightWorld Precision Instruments14393To sterilize before use
Epidermal Growth Factor, humanPromokineC-60180
Ethanol absolute (AnalaR Normapur)VWR BDH Prolabo20821.310
Fetal Bovine SerumLonza14-801F
Forceps, Dumont #5World Precision Instruments14098To sterilize before use
Hank's Balanced Salt Solution 1x Gibco14025050
HEPES 1 M (pH 6.98-7.30)Lonza17-737F
Incubator O2/CO2SanyoMCO-19M
Inverted microscopeNikonEclipse TS100
MatrigelBeckton Dickinson356234
Microbiological Safety Cabinet, level IIFasterSafeFast Elite 212 S
Noyes scissors, sharp/sharp tips, GermanWorld Precision Instruments500228-GTo sterilize before use
Penicillin-Streptomycin mixtureGibco15140122
Phosphate Buffer Saline 10x Gibco14200067
Pipet-AidDrummond Scientific CompanyPipet-Aid XP
Pipetman P1000GilsonF123602
Pipetman P20GilsonF123600
Pipetman P200GilsonF123601
Refrigerated centrifugeEppendorf5810R
ScalpelParamount Surgimed Ltd.Disposable Scalpel Size 23
T25 flask, 25 cm2Sigma-AldrichZ707481
Trypsin inhibitor, from Glycine MaxSigma-AldrichT6522
Type I collagenBeckton Dickinson354236
Waymouth's mediumGibco31220-023

Odniesienia

  1. Lardon, J., Bouwens, L. Metaplasia in the pancreas. Differentiation. 73, 278-286 (2005).
  2. Sphyris, N., Logsdon, C. D., Harrison, D. J. Improved retention of zymogen granules in cultured murine pancreatic acinar cells and induction of acinar-ductal transdifferentiation in vitro. Pancreas. 30, 148-157 (2005).
  3. Amsterdam, A., Jamieson, J. D. Structural and functional characterization of isolated pancreatic exocrine cells. Proc. Natl. Acad. Sci. U.S.A. 69, 3028-3032 (1972).
  4. Amsterdam, A., Jamieson, J. D. Studies on dispersed pancreatic exocrine cells. I. Dissociation technique and morphologic characteristics of separated cells. J. Cell. Biol. 63, 1037-1056 (1974).
  5. Amsterdam, A., Jamieson, J. D. Studies on dispersed pancreatic exocrine cells. II. Functional characteristics of separated cells. J. Cell. Biol. 63, 1057-1073 (1974).
  6. Schultz, G. S., et al. Guinea pig pancreatic acini prepared with purified collagenase. Exp. Cell Res. 130, 49-62 (1980).
  7. Williams, J. A., Korc, M., Dormer, R. L. Action of secretagogues on a new preparation of functionally intact, isolated pancreatic acini. Am. J. Physiol. 235, 517-524 (1978).
  8. Logsdon, C. D., Williams, J. A. Epidermal growth factor binding and biologic effects on mouse pancreatic acini. Gastroenterology. 85, 339-345 (1983).
  9. Han, B., Logsdon, C. D. Cholecystokinin induction of mob-1 chemokine expression in pancreatic acinar cells requires NF-kappaB activation. Am. J. Physiol. 277, 74-82 (1999).
  10. Ji, B., Kopin, A. S., Logsdon, C. D. Species differences between rat and mouse CCKA receptors determine the divergent acinar cell response to the cholecystokinin analog JMV-180. J. Biol. Chem. 275, 19115-19120 (2000).
  11. Ji, K. A., Yang, M. S., Jou, I., Shong, M. H., Joe, E. H. Thrombin induces expression of cytokine-induced SH2 protein (CIS) in rat brain astrocytes: involvement of phospholipase A2, cyclooxygenase, and lipoxygenase. Glia. 48, 102-111 (2004).
  12. Gaiser, S., et al. Intracellular activation of trypsinogen in transgenic mice induces acute but not chronic pancreatitis. Gut. 60, 1379-1388 (2011).
  13. Logsdon, C. D., Williams, J. A. Pancreatic acinar cells in monolayer culture: direct trophic effects of caerulein in vitro. Am. J. Physiol. 250, 440-447 (1986).
  14. Stanger, B. Z., Dor, Y. Dissecting the cellular origins of pancreatic cancer. Cell Cycle. 5, 43-46 (2006).
  15. Vincent, D. F., et al. Tif1gamma suppresses murine pancreatic tumoral transformation by a smad4-independent pathway. Am. J. Pathol. 180, 2214-2221 (2012).
  16. Vincent, D. F., et al. Inactivation of TIF1gamma cooperates with Kras to induce cystic tumors of the pancreas. PLoS Genet. 5, e1000575 (2009).
  17. Dorrell, C., et al. Isolation of mouse pancreatic alpha, beta, duct and acinar populations with cell surface markers. Mol. Cell Endocrinol. 339, 144-150 (2011).
  18. Case, R. M. Synthesis, intracellular transport and discharge of exportable proteins in the pancreatic acinar cell and other cells. Biol. Rev. Camb. Philos. Soc. 53, 211-354 (1978).
  19. Blauer, M., Nordback, I., Sand, J., Laukkarinen, J. A novel explant outgrowth culture model for mouse pancreatic acinar cells with long-term maintenance of secretory phenotype. Eur. J. Cell. Biol. 90, 1052-1060 (2011).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Keywords MousePancreatic Acinar CellsIsolationCultureExocrine PancreasIn VitroCell LinesTumorDifferentiation

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone