Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This work describes a novel method for selectively targeting subcellular organelles in plants, assayed using the BioRad Gene Gun.
In order to target a single protein to multiple subcellular organelles, plants typically duplicate the relevant genes, and express each gene separately using complex regulatory strategies including differential promoters and/or signal sequences. Metabolic engineers and synthetic biologists interested in targeting enzymes to a particular organelle are faced with a challenge: For a protein that is to be localized to more than one organelle, the engineer must clone the same gene multiple times. This work presents a solution to this strategy: harnessing alternative splicing of mRNA. This technology takes advantage of established chloroplast and peroxisome targeting sequences and combines them into a single mRNA that is alternatively spliced. Some splice variants are sent to the chloroplast, some to the peroxisome, and some to the cytosol. Here the system is designed for multiple-organelle targeting with alternative splicing. In this work, GFP was expected to be expressed in the chloroplast, cytosol, and peroxisome by a series of rationally designed 5’ mRNA tags. These tags have the potential to reduce the amount of cloning required when heterologous genes need to be expressed in multiple subcellular organelles. The constructs were designed in previous work11, and were cloned using Gibson assembly, a ligation independent cloning method that does not require restriction enzymes. The resultant plasmids were introduced into Nicotiana benthamiana epidermal leaf cells with a modified Gene Gun protocol. Finally, transformed leaves were observed with confocal microscopy.
This work is a metabolic engineering / synthetic biology project wherein plant cells are engineered to express a reporter protein in multiple organelles but with only a single DNA construct.
One approach to target proteins to more than one location involves cloning multiple genetic copies, each containing a different localization peptide. Each copy must be introduced by successive retransformation, or alternatively, by backcrossing single transforms1. This involves additional cloning, and is limited by one localization tag per terminus.
Another way to localize a protein to multiple locations is through alternative splicing2–5. RNA is transcribed from a single gene, but different copies of the transcript are processed differently, often in more than one way per cell. This can result in more than one messenger RNA in the cell transcribed from a single gene. These different messenger RNAs can encode for different isoforms of the same protein, or in the case of a frameshift, a different protein altogether. Although alternative splicing has been described in the literature for many years, the mechanisms of action and conserved donor and receptor splice sites are only being elucidated more recently6. As these sites are being better described, they open up opportunities for engineering.
Plant metabolic engineers are faced with a challenge when expressing a protein in multiple organelles. For a protein that is to be localized to more than one organelle, the engineer must clone the same gene multiple times, each with a separate signal sequence directing it to the organelle of interest. For a single gene in three organelles, this is simply three genes. But for a six-gene metabolic pathway, this expands to 18 genes, a significant cloning effort. Combining multiple localization sequences into a single, alternatively-spliced gene significantly reduces this effort. For example, re-engineering photorespiration7,8 and isoprenoid synthesis9,10 involves both the chloroplasts and peroxisomes. In our case we took advantage of splice sites as observed in a natural Arabidopsis thaliana system described previously6. We rationally redesigned the mRNA sequence leaving the natural splice sites alone, but placed sequences that would encode chloroplast- or peroxisome- targeting tags within the alternatively-spliced introns (Figure 1). The expressed protein may or may not have a tag, depending on whether the pre-mRNA that encoded it was excised as an intron (Figures 1g and 1h). For more information on the design of the constructs presented in this work, please see the companion article11.
Because this is still a significant cloning effort, Gibson assembly, a new method for cloning DNA constructs, is used in construction. The Gibson method may be used for any sequence, regardless of restriction sites (Figure 2)12–14. The specific mix of enzymes allows for a one-step, isothermal assembly. In this method, several double-stranded linear DNA parts are designed such that they have overlapping sequences of ~50 bp. The Gibson assembly enzyme mix partially digests the linear DNA parts, exposing single strands of homologous sequences. These partial single-stranded sequences are re-annealed in the reaction mixture, resulting in a rapid, one-step, sequence-independent, ligation-free subcloning reaction.
This work describes 1) rational design alternatively spliced constructs for expression in plant chloroplasts, peroxisomes, and cytosols, 2) their cloning using the new ligation-free method of Gibson assembly, 3) their delivery into tobacco leaf cells with the Gene Gun, and 4) results showing organelle targeting, as observed with GFP and confocal microscopy.
1. Design of Alternatively-spliced Sequences for Multiple Organelle Targeting
2. Gibson Assembly of DNA Parts
See also Figure 2.
The Gibson assembly method depends on the action of several enzymes in a pre-made mix to 1) partially digest the ends of the double stranded DNA’s to make single strands and 2) anneal complimentary base pairs of neighboring DNA parts. This allows for cloning of DNA fragments without the limitations of restriction sites.
3. Biolistic Transfection of Tobacco with the Gene Gun
This is a technique that is established in JoVE18,19. Key steps and differences are described below.
4. Confocal Microscopy of Transfected Tissue
These instructions vary for every instrument, so it is essential to get properly trained.
The design effort was a result of significant planning. Novel to this project is the use of alternative splicing to create a pre-mRNA that is translated into differentially expressed proteins. These proteins are expressed in different organelles, in this case the chloroplast, peroxisome and/or cytosol. We adapted natural Arabidopsis gene that is alternatively spliced6, and placed known chloroplast6 and peroxisome17 targeting sequences in alternate exons (TriTag-1 and TriTag-2). T...
In this study, simple strategies are described for localizing a single transgenic protein to multiple cellular compartments in plants. The goal was to design construct that would express a single gene in more than one organelle in Nicotiana benthamiana. Strategies include rational design of GFP-based DNA constructs, Gibson assembly, delivery of the plasmids to leaf cells with the Gene Gun, and observation of the results with confocal microscopy.
Three different short, N-terminal tags ...
The authors have nothing to disclose.
The authors would like to thank Jen Sheen of Massachusetts General Hospital for the generous donation of Nicotiana benthamiana seedlings. Jen Bush helped us greatly in advice in growing plants and setting up a growth chamber area. Tom Ferrante of the Wyss Institute offered crucial help with confocal microscopy. The authors would especially like to thank Don Ingber of Children’s Hospital Boston and the Wyss Institute for the generous donation of a Gene Gun and associated supplies. Funding for this project was provided through a cooperative agreement with the Department of Energy Advanced Research Projects Agency (ARPA- E Award # DE-000079) for PAS, JCW, and MdM, and through Chimerion Biotechnology, Inc. for MJV.
Name | Company | Catalog Number | Comments |
Oligonucleotide primers | IDT | (custom) | Design specifically for construct |
GeneBlocks | IDT | (custom) | 500 bp oligonucleotides |
ApE software | U Utah | (download) | http://biologylabs.utah.edu/jorgensen/wayned/ape/ |
MinElute kit | Qiagen | 28004 | Used to purify PCR products |
QIAprep spin miniprep kit | Qiagen | 27104 | Used to prepare cloning-appropriate amounts of plasmid |
Phusion Master Mix with GC Buffer | NEB | M0532S | Used to PCR-amplify gene of interest |
Gibson assembly reaction mix | NEB | E2611L | Master mix of the following 9 ingredients |
1 M Tris-HCl pH7.5 | Teknova | T1075 | Gibson assembly mix |
1 M MgCl2 | G Biosiences | 82023-086 | Gibson assembly mix |
dNTP mix | Fermentas | R0192 | Gibson assembly mix |
1 M DTT | Fermentas | R0861 | Gibson assembly mix |
PEG-8000 | Affymetrix | 19966 | Gibson assembly mix |
NAD | Applichem | A1124,0005 | Gibson assembly mix |
T5 exonuclease | Epicentre | T5E4111K | Gibson assembly mix |
Phusion polymerase | NEB | F530S | Gibson assembly mix |
Taq DNA ligase | NEB | M0208L | Gibson assembly mix |
Gibthon.org | Website to simplify calculations | ||
Plasmid PLUS Maxi kit | Qiagen | 12963 | Used to prepare DNA for gene gun bullets |
Gene Gun system | BioRad | 165-2451 | Includes all parts necessary |
Nicotania benthamiana | (n/a) | (n/a) | Gift of Jen Sheen, MGH |
Confocal microscope | Leica | SP5 X MP | Imaging of resultant cells |
Deep well slides | Electron Microscopy Sciences | 71561-01 | Used for confocal imaging |
A Plasmid Editor (ApE) | University of Utah | http://biologylabs.utah.edu/jorgensen/wayned/ape | |
Gibthon:Ligation calculator | http://django.gibthon.org/tools/ligcalc/ |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone