JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Dopaminergic neurons play a vital regulatory role in the brain. Their loss is associated with Parkinson's disease. In this video, we show how to generate primary cultures of central dopaminergic neurons from embryonic mouse mesencephalon. Such cultures are useful to study the extreme vulnerability of these neurons to various stresses.

Streszczenie

Dopaminergic neurons represent less than 1% of the total number of neurons in the brain. This low amount of neurons regulates important brain functions such as motor control, motivation, and working memory. Nigrostriatal dopaminergic neurons selectively degenerate in Parkinson's disease (PD). This progressive neuronal loss is unequivocally associated with the motors symptoms of the pathology (bradykinesia, resting tremor, and muscular rigidity). The main agent responsible of dopaminergic neuron degeneration is still unknown. However, these neurons appear to be extremely vulnerable in diverse conditions. Primary cultures constitute one of the most relevant models to investigate properties and characteristics of dopaminergic neurons. These cultures can be submitted to various stress agents that mimic PD pathology and to neuroprotective compounds in order to stop or slow down neuronal degeneration. The numerous transgenic mouse models of PD that have been generated during the last decade further increased the interest of researchers for dopaminergic neuron cultures. Here, the video protocol focuses on the delicate dissection of embryonic mouse brains. Precise excision of ventral mesencephalon is crucial to obtain neuronal cultures sufficiently rich in dopaminergic cells to allow subsequent studies. This protocol can be realized with embryonic transgenic mice and is suitable for immunofluorescence staining, quantitative PCR, second messenger quantification, or neuronal death/survival assessment.

Wprowadzenie

Dopamine, one of the essential brain neurotransmitters1,2, is mainly released by midbrain dopaminergic (DA) neurons. The majority of DA neurons reside in the ventral part of the mesencephalon2-6. Schematically, midbrain DA neurons can be divided in three anatomically and functionally distinct projection systems: mesostriatal, mesolimbic, and mesocortical pathways2,5. The nigrostriatal pathway is involved in motor behavior, the mesolimbic pathways play an important role in reinforcement, motivation, and learning, whereas the dopaminergic pathways projecting to the prefrontal cortex are implicated in cognition2.

DA neurons are involved in several human neurological disorders such as schizophrenia, attention deficit, hyper activity disorder, and Parkinson’s disease (PD)2,4. PD is characterized by a progressive and selective degeneration of DA neurons connecting substantia nigra pars compacta (SNc) to the striatum. The loss of nigro-striatal DA neurons results in severe dopamine depletion in the striatum that is responsible of the motor symptoms of PD (bradykinesia, resting tremor, and rigidity)7. The initial cause of the idiopathic PD has not been established and the current treatments are only symptomatic, aiming at restoring dopamine level in the striatum. The most prescribed drug is L-Dopa (Levodopa), the natural precursor of dopamine. Though administration of Levodopa compensates for the loss of dopamine for a certain time, motor complications occur after long-term treatments (dyskinesia and on/off states)8,9.

Research on dopaminergic neurons and PD is in constant progression and intense efforts are being made to develop treatments based on cell transplantation, gene therapy, or neuroprotective agents10,11. However, a major issue remains non-elucidated: what is the cause of the extreme vulnerability of DA neurons? Part of the answer can be found in the activity of DA neurons. A reduction in the electrical activity and of the excitability of DA neurons seems to augment their propensity to degenerate12. Nevertheless, the complexity of PD pathogenesis requires further studies to identify the mechanisms involved in DA neurons degeneration13-15.

Primary cultures are especially relevant to study DA neuron properties16-19 and to challenge these neurons to various stresses for evaluation of neuroprotective agents20-24. Rat culture models are most often used, as the dissection of rat embryo mesencephalon is easier, compared with the mouse, and higher amounts of neurons can be obtained in the rat. However, generation of transgenic mouse models of the disease25 has considerably increased the interest of the neuroscientist community for primary cultures from the mouse26-29. Although cultures prepared from newborn animals can be used, it is better to prepare them from embryos at the post-mitotic stage (E13.5 for mesencephalon neurons), when neurons have retained their capacity to differentiate. The following protocol presents isolated mesencephalon neurons in primary culture from mouse embryos (E13.5), which are the most difficult to prepare. Notably, we provide a protocol using serum-free culture medium for a better reproducibility. The two most critical steps in culture preparation (dissection and mechanical dissociation) will be carefully detailed in the associated video.

Protokół

 The mice used in this work were cared for and handled in accordance with the guidelines of the European Union Council (86/609/EU) for the use of laboratory animals.

1. Preparation of Required Solutions

  1. Stock Solutions
    1. 10x Poly-L-Ornithine (PLO) Solution: weigh out 10 mg of PLO hydrobromide (molecular weight = 30,000-70,000) and dissolve in 70 ml of sterile water. Filter the solution using 0.2 µm syringe filter, aliquot, and store at -20 °C.
    2. 30% Glucose Solution: weigh out 30 g of D(+)-Glucose and dissolve in sterile water to a total volume of 100 ml. Filter, aliquot, and store at 4 °C.
    3. 5x Dulbecco’s Modified Eagle’s Medium (DMEM)/Nutrient Mixture F-12 Ham: weigh out 6 g of DMEM/F-12 Ham powder and dissolve in sterile water to a total volume of 100 ml. Filter, aliquot, and store at 4 °C.
    4. 7.5% Sodium Bicarbonate (NaHCO3) Solution: weigh out 7.5 g of NaHCO3 and dissolve in sterile water to a total volume of 100 ml. Filter, aliquot, and store at 4 °C.
    5. 1 M HEPES Solution: Weigh out 23.8 g of HEPES and dissolve in sterile water to a total volume of 100 ml. Filter, aliquot, and store at 4 °C.
    6. 70% (v/v) Ethanol: Dilute 70 ml of absolute ethanol with 30 ml of sterile water.
  2. Phosphate Buffered Saline with Glucose and Antibiotics (PBS-GAB): add 10 ml of 30% glucose solution and 5 ml of penicillin-streptomycin solution to 500 ml of Dulbecco’s Phosphate Buffered Saline. Store at 4 °C.
  3. Inactivated Fetal Bovine Serum (iFBS): Thaw bovine serum overnight at 4 °C and inactivate at 56 °C for 30 min. Aliquot into 50 ml and store at -20 °C.
  4. Culture Medium: In sterile water, mix successively 40 ml of 5x DMEM/F12-Ham, 1 ml of 1 M HEPES, 2 ml of 200 mM L-Glutamine, 2 ml of penicillin-streptomycin, 4 ml of 30% glucose and 3 ml of 7.5% NaHCO3 to a final volume of 180 ml. Filter and use the same day.
  5. Hormone Mix
    1. Prepare 180 ml of culture medium. Dissolve 200 mg of apo-transferrin in this medium.
    2. Weigh out 50 mg of insulin and dissolve in 2 ml of 0.1 M HCl. Add slowly 8 ml of sterile water while mixing gently. Dilute this solution in the culture medium.
    3. Weigh out 19.3 mg of Putrescine dihydrochloride and dissolve in 10 ml of sterile water. Add the 10 ml solution to the hormone mix.
    4. Prepare a 3 mM sodium selenite solution in sterile water and a 2 mM progesterone solution in absolute ethanol. Add 20 μl of each solution to the hormone mix.
    5. Filter the hormone mix, aliquot into 10 ml and store at -20 °C.

2. Preparation of Culture Plates and Instruments

  1. FBS Coating of the Culture Plates: The day prior the dissection, prepare 180 ml of culture medium. Add 10 ml of iFBS to 90 ml of culture medium. Add 300 μl/well of culture medium/10% iFBS into poly-D-lysine precoated 24-well plates. Incubate overnight at 37 °C. Store the remaining media (with and without iFBS) at 4 °C.
  2. Sterilize the instruments and Pasteur pipettes. Gather the equipment listed in Materials table as well as a Class II laminar flow hood and a CO2 incubator.

3. Dissection of Mouse Mesencephalon

  1. Sacrifice an E13.5 pregnant mouse (according to institutional guidelines). Clean the abdomen of the mouse with 70% ethanol and open the abdomen wall. Collect the uterine horns, open them using delicate scissors, dissect each embryo from the uterine horns, and remove the amniotic membranes. Place the embryos in a 100 mm Petri dish containing sterile PBS-GAB and wash them by transfer in 3 successive identical baths using forceps. For dissection, place the embryos by 3 in a 60 mm sterile Petri dish.
  2. Move the final Petri dish under the stereomicroscope. Do not behead the embryos. Using Vannas scissors, excise the brains.
    1. Carefully remove and discard the fore- and hindbrain regions. To the rostral side, cut close to the thalamic region, to the caudal side cut at the isthmus region, remove the superior colliculus.
    2. Once the ventral midbrain is isolated, carefully remove meninges using ultra fine forceps. Collect the dissected segments, without the meninges, in a sterile 13 ml tube filled with PBS-GAB.
  3. Clean the tube containing the mesencephala thoroughly with 70% ethanol and bring it under the hood.

4. Cell Dissociation

  1. Wash mesencephala 3x with sterile PBS-GAB. Allow brain fragments to settle between each wash and avoid disrupting the tissue. After the last wash, remove carefully as much solution as possible and incubate brain segments in 3 ml of Trypsin/EDTA for 15 min at 37 °C in a CO2 incubator.
  2. Fire-polish the Pasteur pipettes to maximize the survival of the neurons as the end of a non-polished glass pipet is sharp and can damage the cells during the dissociation steps. Slightly reduce the extremity diameter (up 0.5 mm) of the Pasteur pipette while fire-polishing it.
  3. Carefully remove as much Trypsin/EDTA solution as possible and add 10 ml of culture medium/10% iFBS. Wash brain segments 3x with culture medium/10% iFBS.
  4. Using the fire-polished Pasteur pipette, begin dissociation of mesencephala in 6 ml of culture medium/10% iFBS. Triturate 10x (avoid air bubbles), allow the chunks to settle, then collect the medium in a new sterile 13 ml tube.
  5. Add 6 ml of culture medium, repeat the previous step once and collect the medium containing dissociated cells in the same 13 ml tube.
  6. Centrifuge cells at 160 g for 5 min. Discard the supernatant and resuspend the cells in culture medium supplemented with 10% hormone mix.

5. Cell Plating

  1. Count cells in suspension in a Malassez cell and adjust the volume of medium to a concentration of 600,000 cells/ml. Around 1,700,000 cells can be obtained from one mouse mesencephalon.
  2. Remove FBS-containing coating medium from 24-well plates and add in each well 1 ml of cell suspension (600,000 cells/well, 2-4% of TH+ cells).
  3. Incubate the plate at 37 °C and 5% CO2/95% air. No medium change is necessary. Dopaminergic neurons are mature after around 5-7 days in vitro (consistent expression of the dopamine transporter). Keep cells in culture up to 15 days without medium replacement.

6. Immunofluorescence Protocol

  1. Cleaning of the Coverslips
    1. The day before the dissection, add 10 ml of 1 M HCl into a Petri dish. Lay at the surface of the liquid 12-15 glass coverslips and wait 15 min.
    2. Sink the coverslip into the liquid and wait for 15 min.
    3. Remove HCl and wash 3x with water.
    4. Wash the coverslips quickly with pure ethanol once, then add pure ethanol to the dish and wait for 30 min.
    5. Under the hood, remove cleaned coverslips from ethanol and add 1 coverslip per well of a 12-well cell culture plate using sterilized forceps.
    6. Wash coverslips twice with sterile water (1 ml/well). Then, wash them once with sterile PBS.
  2. Coating of the Coverslips
    1. Remove PBS and add 500 μl/well of 2x PLO (diluted in PBS). Incubate for 4 hr at 37 °C in the CO2 incubator.
    2. Remove the PLO solution and wash 3x with sterile PBS.
    3. Remove PBS and add 500 μl/well of 20% iFBS/1 g/ml Laminin. Incubate overnight at 37 °C in the CO2 incubator.
  3. Plating the Cells for Immunofluorescence
    1. Remove coating medium from 12-well plates.
    2. Add 900,000 cells/well in 2 ml volume and grow the cells at 37 °C in the incubator. Cells can be kept in culture up to 15 days without medium replacement.
  4. Immunostaining
    1. Remove medium from 12-well plates and wash with 500 μl/well DMEM preheated at 37 °C.
    2. Add 500 μl/well of DMEM preheated at 37 °C, then add gently 160 μl/well of 8% paraformaldehyde (PFA, 2% final concentration) and incubate for 10 min at 37 °C.
    3. Remove PFA and wash 3x with PBS/0.1 M glycine for 10 min.
    4. Remove PBS, add 300 μl/well of PBS/0.05% Triton X-100/20% Goat serum and incubate for 30 min at room temperature.
    5. Remove medium, add 300 μl/well of primary antibody diluted in PBS/0.05% Triton X-100/1% Goat serum and incubate for 2 hr at room temperature. Primary antibodies that can be used for the detection of dopaminergic neurons and characterization of the culture are indicated in the Materials table. Keep 1 well without primary antibody to assess for background of the different secondary antibodies.
    6. Remove medium and wash 3x with PBS/0.2% gelatine for 10 min.
    7. Remove medium, add 300 μl/well of secondary antibody diluted in PBS/0.05% Triton X-100/1% Goat serum and incubate for 1 hr at room temperature, in the dark. Secondary antibodies used are indicated in the Materials table.
    8. Remove medium and wash 3x with PBS/0.2% gelatine for 10 min.
    9. Remove medium and wash 3x with PBS.
    10. Mount the coverslips on glass slides cell side down in a drop of VECTASHIELD. Keep the slides at room temperature overnight to let the mounting medium dry, then store them at 4 °C.
    11. Acquire images using a confocal microscope or a phase-contrast microscope equipped for epifluorescence. Representative images were acquired with a Leica SP2 UV confocal microscope.

Wyniki

An illustrated flow chart of the mesencephalon culture steps is shown in Figure 1. Briefly, after collecting E13.5 embryos from a pregnant Swiss mouse, ventral mesencephalon is dissected from the entire embryo. The isolated brain fragments are successively submitted to enzymatic digestion and mechanical dissociation. Dissociated cells are pelleted by centrifugation, resuspended in culture medium and plated in pre-coated 12- or 24-well plates. Cells are maintained up to 15 days without medium replacement....

Dyskusje

This protocol presents the procedures and reagents necessary to prepare a primary culture of mesencephalic neurons from the embryonic mouse and the immunofluorescence procedure to detect dopaminergic neurons. Critical steps of the procedure are the dissection of the embryos and the mechanical dissociation of the collected brain fragments. High quality dissection instruments helps to master the dissection technique. DA neurons constitute a small proportion of mesencephalon. Accordingly, collecting the right part of the ve...

Ujawnienia

The authors have nothing to disclose.

Podziękowania

Supported by grants from CNRS and INSERM. PM acknowledges support from the Fondation pour la Recherche Médicale en France (Equipe FRM 2009). SC acknowledges support from the Fondation de France.

Materiały

NameCompanyCatalog NumberComments
Fetal Bovine SerumLonza14-801F
DMEM 4.5 g/L glucose with L-glutamineLonzaBE12-604F
0.05% Trypsin-EDTA (1x), phenol redLife Technologies25300-054
Penicillin-Streptomycin (10,000 U/ml)Life Technologies15140122
L-Glutamine, 200 mM solutionLife Technologies25030123
Dulbecco’s Phosphate Buffered SalineSigma-Aldrich D8537
Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 HamSigma-Aldrich D0547Powder
Laminin - 1 mg/ml in Tris buffered NaClSigma-Aldrich L2020
Poly-L-Ornithine hydrobromideSigma-Aldrich P3655
Insulin from porcine pancreasSigma-Aldrich I5523
apo-Transferrin humanSigma-Aldrich T1147
Putrescine dihydrochlorideSigma-Aldrich P5780
ProgesteroneSigma-Aldrich P8783
Sodium seleniteSigma-Aldrich S5261
HEPESSigma-Aldrich H4034 
GlycineSigma-Aldrich G7126Stock solution 1 M in water
GelatinSigma-Aldrich G9391Stock solution 2% (w/v) in water
Triton X-100Sigma-Aldrich T8532
Paraformaldehyde 16% in waterElectron Microscopy SciencesRT 15710-S
Sodium bicarbonate (NaHCO3)Merck Millipore106329
D(+)-Glucose, MonohydrateMerck Millipore4074-2
Hydrochloric acid - c(HCl) = 1 mol/L (1 N) TitripurMerck Millipore109057
Sterile water - Aqua B. BraunBraun
Ethanol absolute NORMAPUR analytical reagentVWR20821.321
Sterile Petri dishesVWR82050-566
Pasteur pipettes plain glass - Wilhem Ulbrich GdbR.VWR612-2297
Counting chamber MalassezVWR631-0975
Serum Acrodisc Syringe Filter with Supor Membrane, Sterile, GF/0.2 µm, 37 mmPALL Life science4525
Surgical Scissors - Straight, sharp-sharp, 14.5 cm longFine Science Tools14002-14To open the abdominal wall
Scissors - Straight, pointed, delicate, 10 cm longMORIA4877ATo open the uterine wall
Forceps - Curved, usual, serrated jaws 1 mmMORIA2183To manipulate embryos
Vannas Scissors - Curved, pointed, 7 mm bladesMORIAMC50To take out the mesencephalon
Ultra Fine Forceps - Curved, delicate, 13 cm longMORIA9987To remove meninges
BD BioCoat Poly-D-Lysine 24-well Multiwell PlatesBD Bioscience356414
BD Falcon 12-well Cell Culture Plate, flat-bottom with lidBD Bioscience353043
SuperFrost Microscope Slides, Ground edges 90ºMENZEL-GLÄSERAG00008032E
Precision cover glasses thickness No. 1.5H circular 18 mm ØMARIENFELD117580
Polyclonal Rabbit Anti-Microtubule-Associated Protein 2 (MAP2) AntibodyChemicon MilliporeAB56221/200
Monoclonal Mouse Anti-Glutamate Decarboxylase (GAD67) Antibody, clone 1G10.2Chemicon MilliporeMAB54061/400
Monoclonal Rat Anti-Dopamine Transporter (DAT) Antibody, clone DAT-Nt Chemicon MilliporeMAB3691/500
Monoclonal Mouse Anti-5-HT Antibody1/8,000 - Generous gift from Yves Charnay (Swizerland, Yves.Charnay@hcuge.ch)
Goat Serum, New Zealand OriginLife Technologies16210-064
Alexa Fluor 405 Goat Anti-Rabbit IgG (H+L) AntibodyLife TechnologiesA-315561/200
Alexa Fluor 488 Goat Anti-Mouse IgG (H+L) AntibodyLife TechnologiesA-110011/1,000
Alexa Fluor 594 Goat Anti-Rat IgG (H+L) AntibodyLife TechnologiesA-110071/1,000
VECTASHIELD HardSet Mounting MediumVector LaboratoriesH-1400
StereomicroscopeCarl Zeiss microscopyStemi-2000C
Bunsen Burner FIREBOYVWR451-0136

Odniesienia

  1. Glowinski, J., Cheramy, A., Romo, R., Barbeito, L. Presynaptic regulation of dopaminergic transmission in the striatum. Cell Mol Neurobiol. 8, 7-17 (1988).
  2. Iversen, S. D., Iversen, L. L. Dopamine: 50 years in perspective. Trends Neurosci. 30, 188-193 (2007).
  3. Dahlstroem, A., Fuxe, K. Evidence for the Existence of Monoamine-Containing Neurons in the Central Nervous System I. Demonstration of Monoamines in the Cell Bodies of Brain Stem Neurons. Acta Physiol Scand Suppl. SUPPL. , 231-255 (1964).
  4. Chinta, S. J., Andersen, J. K. Dopaminergic neurons. Int J Biochem Cell Biol. 37, 942-946 (2005).
  5. Bjorklund, A., Dunnett, S. B. Dopamine neuron systems in the brain: an update. Trends Neurosci. 30, 194-202 (2007).
  6. Hegarty, S. V., Sullivan, A. M., O'Keeffe, G. W. Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Dev Biol. 379, 123-138 (2013).
  7. Samii, A., Nutt, J. G., Ransom, B. R. Parkinson's disease. Lancet. 363, 1783-1793 (2004).
  8. Santini, E., Heiman, M., Greengard, P., Valjent, E., Fisone, G. Inhibition of mTOR signaling in Parkinson's disease prevents L-DOPA-induced dyskinesia. Sci Signal. 2, (2009).
  9. Ohlin, K. E., et al. Vascular endothelial growth factor is upregulated by L-dopa in the parkinsonian brain: implications for the development of dyskinesia. Brain. 134, 2339-2357 (2011).
  10. Obeso, J. A., et al. Missing pieces in the Parkinson's disease puzzle. Nat Med. 16, 653-661 (2010).
  11. Cooper, O., et al. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson's disease. Sci Transl Med. 4, (2012).
  12. Michel, P. P., Toulorge, D., Guerreiro, S., Hirsch, E. C. Specific needs of dopamine neurons for stimulation in order to survive: implication for Parkinson disease. FASEB J. 27, 3414-3423 (2013).
  13. Decressac, M., Volakakis, N., Bjorklund, A., Perlmann, T. NURR1 in Parkinson disease-from pathogenesis to therapeutic potential. Nat Rev Neurol. , (2013).
  14. Jouve, L., Salin, P., Melon, C., Le Goff, L. K. e. r. k. e. r. i. a. n. -. Deep brain stimulation of the center median-parafascicular complex of the thalamus has efficient anti-parkinsonian action associated with widespread cellular responses in the basal ganglia network in a rat model of Parkinson's disease. J Neurosci. 30, 9919-9928 (2010).
  15. Hirsch, E. C., Jenner, P., Przedborski, S. Pathogenesis of Parkinson's disease. Mov Disord. 28, 24-30 (2013).
  16. di Porzio, U., Daguet, M. C., Glowinski, J., Prochiantz, A. Effect of striatal cells on in vitro maturation of mesencephalic dopaminergic neurones grown in serum-free conditions. Nature. 288, 370-373 (1980).
  17. Denis-Donini, S., Glowinski, J., Prochiantz, A. Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurones. Nature. 307, 641-643 (1984).
  18. Barbin, G., Mallat, M., Prochiantz, A. In vitro studies on the maturation of mesencephalic dopaminergic neurons. Dev Neurosci. 7, 296-307 (1985).
  19. Marey-Semper, I., Gelman, M., Levi-Strauss, M. A selective toxicity toward cultured mesencephalic dopaminergic neurons is induced by the synergistic effects of energetic metabolism impairment and NMDA receptor activation. J Neurosci. 15, 5912-5918 (1995).
  20. Salthun-Lassalle, B., Hirsch, E. C., Wolfart, J., Ruberg, M., Michel, P. P. Rescue of mesencephalic dopaminergic neurons in culture by low-level stimulation of voltage-gated sodium channels. J Neurosci. 24, 5922-5930 (2004).
  21. Toulorge, D., et al. Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic Ca2. FASEB J. 25, 2563-2573 (2011).
  22. Rousseau, E., Michel, P. P., Hirsch, E. C. The Iron-Binding Protein Lactoferrin Protects Vulnerable Dopamine Neurons from Degeneration by Preserving Mitochondrial Calcium Homeostasis. Mol Pharmacol. 84, (2013).
  23. Orme, R. P., Bhangal, M. S., Fricker, R. A. Calcitriol imparts neuroprotection in vitro to midbrain dopaminergic neurons by upregulating GDNF expression. PLoS One. 8 (e62040), (2013).
  24. Choi, W. S., Kruse, S. E., Palmiter, R. D., Xia, Z. Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat. Proc Natl Acad Sci U S A. 105, 15136-15141 (2008).
  25. Trancikova, A., Ramonet, D., Moore, D. J. Genetic mouse models of neurodegenerative diseases. Prog Mol Biol Transl Sci. 100, 419-482 (2011).
  26. Gao, H. M., Liu, B., Zhang, W., Hong, J. S. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease. FASEB J. 17, 1954-1956 (2003).
  27. Lin, X., et al. Conditional expression of Parkinson's disease-related mutant alpha-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. J Neurosci. 32, 9248-9264 (2012).
  28. Bye, C. R., Thompson, L. H., Parish, C. L. Birth dating of midbrain dopamine neurons identifies A9 enriched tissue for transplantation into parkinsonian mice. Exp Neurol. 236, 58-68 (2012).
  29. Ramonet, D., et al. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One. 6 (e18568), (2011).
  30. Prestoz, L., Jaber, M., Gaillard, A. Dopaminergic axon guidance: which makes what. Front Cell Neurosci. 6, (2012).
  31. Nunes, I., Tovmasian, L. T., Silva, R. M., Burke, R. E., Goff, S. P. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci U S A. 100, 4245-4250 (1073).
  32. Ferri, A. L., et al. Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development. 134, 2761-2769 (2007).
  33. Rayport, S., et al. Identified postnatal mesolimbic dopamine neurons in culture: morphology and electrophysiology. J Neurosci. 12, 4264-4280 (1992).
  34. Kim, K. M., Nakajima, S., Nakajima, Y. Dopamine and GABA receptors in cultured substantia nigra neurons: correlation of electrophysiology and immunocytochemistry. Neuroscience. 78, 759-769 (1997).
  35. Nefzger, C. M., et al. Lmx1a allows context-specific isolation of progenitors of GABAergic or dopaminergic neurons during neural differentiation of embryonic stem cells. Stem Cells. 30, 1349-1361 (2012).
  36. Su, H., et al. Immediate expression of Cdh2 is essential for efficient neural differentiation of mouse induced pluripotent stem cells. Stem Cell Res. 10, 338-348 (2013).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Keywords Primary CultureMouse Dopaminergic NeuronsParkinson s DiseaseNigrostriatal NeuronsNeurodegenerationVentral MesencephalonTransgenic Mouse ModelsImmunofluorescenceQPCRSecond MessengersNeuronal Death survival

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone