Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
DNA repair pathways are essential for maintenance of genomic integrity and preventing mutation and cancer. The goal of this protocol is to quantify genomic instability by direct observation of chromosome aberrations in metaphase spreads from mouse B cells using fluorescent in situ hybridization (FISH) for telomeric DNA repeats.
Defective DNA repair leads to increased genomic instability, which is the root cause of mutations that lead to tumorigenesis. Analysis of the frequency and type of chromosome aberrations in different cell types allows defects in DNA repair pathways to be elucidated. Understanding mammalian DNA repair biology has been greatly helped by the production of mice with knockouts in specific genes. The goal of this protocol is to quantify genomic instability in mouse B lymphocytes. Labeling of the telomeres using PNA-FISH probes (peptide nucleic acid - fluorescent in situ hybridization) facilitates the rapid analysis of genomic instability in metaphase chromosome spreads. B cells have specific advantages relative to fibroblasts, because they have normal ploidy and a higher mitotic index. Short-term culture of B cells therefore enables precise measurement of genomic instability in a primary cell population which is likely to have fewer secondary genetic mutations than what is typically found in transformed fibroblasts or patient cell lines.
Cancer is caused by the accumulation of mutations affecting genes that regulate normal cell growth. Mutation is a consequence of changes to the structure and sequence of the genome caused by damage to DNA. DNA damage can occur through a variety of process, including exogenous agents such as ionizing radiation, and as a by-product of normal cellular metabolism, such as spontaneous deamination of nucleotide bases or damage occurring by contact with reactive oxygen species1.
Although mammalian cells possess a range of repair activities which can reverse DNA damage or restore the sequence at break sites, mutations nonetheless accumulate throughout the lifetime of a cell. DNA damage can furthermore contribute to senescence and loss of potency of stem cells, two processes which are associated with aging-associated disease2. Understanding the repair of DNA damage is therefore of central importance in addressing two significant issues in public health. Increasing evidence suggests that mammalian DNA repair pathways can contribute to the evolution of the cancer cell genome3,4, making it even more imperative to understand the processes involved in suppressing mutation at the molecular level.
Direct visualization of chromosome aberrations is a powerful and quantitative means of determining the extent of genomic instability in a particular cell type. Condensed chromosomes from cells at metaphase can be isolated and inspected using light or fluorescent microscopy. Such cytogenetic approaches have been in practice for several decades and can be used to demonstrate the appearance of translocations or specific types of chromosome aberrations associated with loss of DNA repair activities. The protocol lends itself to several potential extensions: chromosomes can be labeled with probes for spectral karyotyping (SKY) or multicolor fluorescent in situ hybridization (mFISH) to identify translocations5,6. These techniques also enable the frequency of chromosome translocations and the structure of complex chromosome translocations to be determined, which provides additional information beyond what is possible with this protocol. Alternatively, sequence-specific probes can be generated and used to test the frequency of DNA breakage at selected genomic sites7.
In this protocol, we describe preparation of metaphase chromosome spreads from B lymphocytes. A fluorescently-labeled peptide nucleic acid (PNA) probe for telomeric repeats is used, which efficiently marks telomeres in metaphase chromosome spreads This protocol has several advantages. B cells can be induced to grow at high mitotic index so that high-quality spreads can consistently be produced. B cells from genetically-modified mice are also much less likely to contain secondary genetic mutations that can confound the analysis of the contribution of specific genes to genomic integrity. The PNA-FISH approach can be completed in one day, and allows more accurate scoring of chromosome breaks. By using this approach, particularly in combination with specific equipment described in this protocol, it is possible to produce very consistent, high-quality spreads and rapidly analyze the rate and type of genomic instability.
This procedure was approved by the Institutional Animal Care and Use Committee at Rutgers, the State University of New Jersey. Mice were treated in accordance with the NIH Guide for the Care and Use of Laboratory Animals. Scientists should consult their national and institutional animal organizations for established and approved guidelines.
Before beginning, prepare the solutions listed in Table 1.
1. B Cell Isolation and Activation
Euthanize a mouse using CO2 followed by cervical dislocation. Position the mouse so the left side of the body is up and spray the mouse with 70% ethanol until the fur is damp. Dissect the spleen and place in a 35 mm tissue culture dish with 2 ml wash buffer. In a laminar flow hood, gently break up the spleen in the tissue culture dish using the flat end of a 5 ml syringe.
2. B Cell Fixation
3. Preparation of Metaphase Chromosome Spreads
4. Telomere PNA FISH
5. Microscopic Analysis of Chromosomes
Metaphase chromosomes derived from one cell should form a discrete cluster containing 40 chromosomes (if using mouse cells) (Figure 1A). Each chromosome has a centromere at one end, which is visible as a light blue sphere. In normal chromosomes, two telomere signals are seen at the end of the chromatids and two signals by each centromere. Interphase nuclei will be present on the slide as well. These will be visible as blue spheres, with red telomere signals, but no condensed chromosomes (see for example ...
Whereas activated B lymphocytes are particularly suited to preparation of mitotic chromosome spreads, other cell types can also be used. T lymphocytes share many of the advantages of B cells, as they can be purified from the spleen or lymph nodes, and have a high mitotic index when stimulated by growth in medium containing appropriate mitogens8. Embryonic Stem cells (ES cells) are also suited for metaphase chromosome analysis9. If these are not available, fibroblast cells can be used, although a lon...
The authors have no conflicting interests.
This work is supported by NIH grant R00 CA160574 (SFB) and by a fellowship of the Rutgers Biotechnology Training Program (to SMM).
Name | Company | Catalog Number | Comments |
50% Dextran sulfate | Intergen | S4030 | |
Deionized formamide | Ambion | 9342 | |
Pepsin (5 g) | Sigma | P 6887 | |
FCS | Gemini | 100-106 | |
LPS (100 mg) | Sigma | L2630 | |
IL-4 (5 μg) | Sigma | I1020 | |
PNA Telomere Probe | PNA Bio Inc | F1002 | (CCCTAACCCTAACCCTAA) |
Colcemid | Roche | 295892 | |
Mowiol 4-88 | Sigma | 81381-50g | |
CD43 (ly-48_) micro-beads | Miltenyl Biotec. | 130-049-801 | |
DAPI | Sigma | 32670-5MG | |
Eclipse E800 | Nikon | ||
AxioImager.Z2 | Zeiss | ||
CDS-5 Cytogenetic Drying Chamber | Thermotron |
A correction was made to: Rapid Analysis of Chromosome Aberrations in Mouse B Lymphocytes by PNA-FISH. Table 1 (the list of solutions to prepare) was omitted from the Protocol section. The contents of Table 1 are as follows:
Solution | Reagents | Comments | Storage |
B Cell Wash Buffer | 500 ml 1x Hanks Balanced Salt Solution | Filter through 0.22 μm stericup filtration unit | 4 °C |
5 ml 50 °C heat inactivated FCS | |||
5 ml 100x Pen/Strep | |||
B Cell Medium | 418.5 ml RPMI-1640 | Filter through 0.22 μm stericup filtration unit | 4 °C |
50 ml 50 °C heat inactivated FCS | |||
5 ml 100x Pen/Strep | |||
5 ml glutamine | |||
5 ml nonessential amino acids | |||
5 ml sodium pyruvate | |||
1.8 ml 14.2 M 2-mercaptoethanol | |||
5 ml 1M HEPES | |||
Fixative | 3:1 v/v methanol/glacial acetic acid | Make fresh | |
0.075 M KCl | 1.395 g KCl | Room Temperature | |
250 ml distilled H2O | |||
FISH Master Mix | 40 ml 50% Dextran sulfate | Vortex the solution and leave in a shaking platform overnight | Aliquot and store at -20 °C |
20 ml 20x SSC | |||
40 ml sterile distilled H2O | |||
70% Formamide/2x SSC | 10 ml 20x SSC | Adjust to pH 7 with 1M HCl | Aliquot and store at -20 °C |
20 ml distilled H2O | |||
70 ml deionized formamide | |||
0.01 M HCl | 1 ml 1M HCl | Adjust to pH 2.0 | Room Temperature |
99 ml distilled H2O | |||
1x PBS/MgCl2 | 50 ml 1M MgCl2 | Room Temperature | |
950 ml 1x PBS | |||
50% Formamide/2x SSC | 20 ml 20x SSC | Adjust to pH 7.25 Formamide used in this step does not have to be deionized. | Make fresh |
80 ml distilled H2O | |||
100 ml formamide | |||
4x SSC/0.1% Tween20 | 50 ml 20x SSC | Room Temperature | |
200 ml distilled H2O | |||
250 μl Tween20 | |||
DAPI staining solution (80 ng/ml) | 40 μl 0.2mg/ml DAPI stock | 4 °C in light protected staining jar | |
100 ml 2x SSC | |||
Mowiol Mounting Medium | 6 g glycerol | Incubate at 50 °C with stirring for 2hrs | Aliquot and store at 4 °C |
2.4 g Mowiol 4-88 | |||
6 ml distilled H2O | |||
12 ml 0.2 M TrisCl pH 8.5 | |||
230 μl 1% Thimerosal (w/v in water) |
Table 1. List of solutions.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone