Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
This manuscript describes a murine calvarial osteolysis model by exposure to CoCrMo particles, which constitutes an ideal animal model for assessing the interactions between wear particles and various cells in aseptic loosening.
Wear particle-induced osteolysis is a major cause of aseptic loosening in arthroplasty failure, but the underlying mechanism remains unclear. Due to long follow-ups necessary for detection and sporadic occurrence, it is challenging to assess the pathogenesis ofparticle-induced osteolysis in clinical cases. Hence, optimal animal models are required for further studies. The murine model of calvarial osteolysis established by exposure to CoCrMo particles is an effective and valid tool for assessing the interactions between particles and various cells in aseptic loosening. In this model, CoCrMo particles were first obtained by high-vacuum three-electrode direct current and resuspended in phosphate-buffered saline at a concentration of 50 mg/mL. Then, 50 µL of the resulting suspension was applied to the middle of the murine calvaria after separation of the cranial periosteum by sharp dissection. After two weeks, the mice were sacrificed, and calvaria specimens were harvested; qualitative and quantitative evaluations were performed by hematoxylin and eosin staining and micro computed tomography. The strengths of this model include procedure simplicity, quantitative evaluation of bone loss, rapidity of osteolysis development, potential use transgenic or knockout models, and a relatively low cost. However, this model cannot to be used to assess the mechanical force and chronic effects of particles in aseptic loosening. Murine calvarial osteolysis model generated by exposure to CoCrMo particles is an ideal tool for assessing the interactions between wear particles and various cells, e.g., macrophages, fibroblasts, osteoblasts and osteoclasts, in aseptic loosening.
Aseptic loosening is the most common cause of total hip arthroplasty (THA) and total knee arthroplasty (TKA) failure, which requires revision surgery1. However, the underlying mechanism remains unclear2. A long follow-up is required to detect particle-induced osteolysis, whose occurrence is rare; therefore, it is challenging to explore its pathogenesis in clinical cases. Hence, further studies focusing on complex cellular and tissue mechanisms require both in vivo experiments in wear particle-induced osteolysis models and in vitro assays in cells related to bone homeostasis3. A valid animal model is important in revealing the effects of wear particles on bone loss, providing evidence for further cellular assays.
A murine calvarial osteolysis model constructed by exposure to CoCrMo particles is an effective and valid method for assessing the interactions between particles and various cells in aseptic loosening. In this model, CoCrMo particles cause calvarial osteolysis by inducing inflammatory cytokines in macrophages, activating osteoclasts, inhibiting osteoblast proliferation, and promoting osteoblast apoptosis.
It only takes two weeks to establish this model. Osteolysis can be visualized and quantified by hematoxylin and eosin (H&E) staining and micro computed tomography (micro-CT)2. In addition, this model has a relatively low cost, and transgenic and knockout mouse models can be used to screen a large number of compounds at various doses3.
The procedure to establish and evaluate this model is simple. First, CoCrMo particles were obtained by high-vacuum three-electrode direct current and resuspended in phosphate-buffered saline (PBS) at a concentration of 50 mg/mL. Then, 50 µL of the resulting suspension was applied to the middle of the murine calvaria after separation of the cranial periosteum by sharp dissection. The mice were sacrificed after two weeks, and calvaria samples were harvested; qualitative and quantitative analyses were performed by H&E staining andmicro-CT.
A murine calvarial osteolysis model constructed by exposure to CoCrMo particles is an ideal tool for assessing the interactions between CoCrMo particles and various cells, such as macrophages, fibroblasts, osteoblasts, and osteoclasts, in aseptic loosening.
All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) of Nanjing University.
1. CoCrMo Particle Preparation
2. Construction of the Calvarial Osteolysis Model
3. Evaluation of Calvarial Osteolysis Model by Micro-CT Scanning
4. Evaluation of Calvarial Osteolysis Model by H&E Staining
The in-house produced nanoscale CoCrMo particles were around 50 nm (standard error of 3.56) in diameter, as quantified by TEM (Figure 2). After exposure of mouse calvarias to CoCrMo particles, the animals (n=6 per group) were maintained for another two weeks. Within the two weeks, the calvarial incision was completely healed, and the suture may fall. Any local infection or nonunion may affect bone loss assessment. After mouse sacrifice, calvaria samples were ...
There are two main methods for wear particle-induced osteolysis in mice: the air-pouch model and the calvarial osteolysis model. In the air-pouch model, a subcutaneously generated air-pouch is first established, followed by wear particle introduction and implantation into the bone tissue8. The pouch wall mimics the periosteum in aseptic loosening. However, bone implantation is nonvascular with no biological activity, which makes it difficult to assess direct interactions between particles and the ...
The authors have nothing to disclose.
This study was supported by the National Natural Science Foundation of China (81572111), the Clinical Science and Technology Project Foundation of Jiangsu Province (BL2012002), the Scientific Research Project of Nanjing (201402007), the Natural Science Foundation of Jiangsu Province (BK20161385), and the Special Foundation of Chinese Medical Doctor Association (2015COS0810).
Name | Company | Catalog Number | Comments |
CoCrMo alloy from prosthesis | Waldemar Link GmbH & Co | GEMINI MK II | Raw material to obtain CoCrMo nanoparticles |
Fabricated high-vacuum three-electrode direct current | College of Materials Science & Engineering , Nanjing University of Technology | Self designed machine | |
6 week old male C57BL/6J mice | Model animal research center of Nanjing University | N000013 | |
100% Ethanol | Nanjing Reagent | C0691514023 | Solvent of CoCrMo nanoparticles for transmission electron microscope scanning |
1.5 ml Microcentrifuge tubes | Taizhou Weierkang Medical Supplies co., LTD | W603 | |
Microanalytical balance | Shenzhen Qun long Instrument Equipment Co,. LTD | EX125DZH | |
Ultrasonic shaker | Shanghai Yuhao scientific instrument co., LTD | YH-200DH | To suspend CoCrMo nanoparticles |
Transmission Electron Microscope | FEI | Tecnai G20 | |
SimplePCI software | Compix Inc. | 6.6 version | To calculate the mean diameter and particle size distribution. |
High-handed sterilization pan | QIULONGYIQI | KYQL-100DS | To decontaminate endotoxin |
Limulus Amebocyte Lysate (LAL) Assay | Charles River | R13025 | To detect endotoxin |
15 ml Microcentrifuge tubes | Taizhou Suyi Medical | B122 | |
Phosphate-buffered saline | Boster Biological Technology | AR0030 | Solvent of CoCrMo nanoparticles stock solution |
Pentobarbital Sodium | Sigma | P3761 | To anesthetize mice |
Normal saline | SACKLER | SR8572EP-15 | To prevent drying of mice eyes |
75% Ethanol | Nanjing Reagent | C0691560275 | Disinfection |
Medical cotton ball | Shuitao | 1278298933 | Disinfection |
Shaver | Kemei | KM-3018 | To shave the fur |
Scissor | RWD LIFE SCIENCE | S12005-10 | To incise skin |
Suture | RWD LIFE SCIENCE | F34001-01 | To suture skin |
Needle holder | RWD LIFE SCIENCE | F33001-01 | To suture skin |
Needle | RWD LIFE SCIENCE | R14003-12 | To suture skin |
Vessel forceps | RWD LIFE SCIENCE | F22003-09 | To suture skin |
Scalpel | RWD LIFE SCIENCE | S31010-01 | To harvest calvaria |
Tweezers | RWD LIFE SCIENCE | F12006-10 | To harvest calvaria |
100 µL pipettes | Eppendorf | 3120000240 | To embed particles suspension in the calvatias |
100 µL pipette tips | AXYGEN | T-200-Y | To embed particles suspension in the calvatias |
5 ml Microtubes | Taizhou Weierkang Medical Supplies co., LTD | W621 | |
4% Paraformaldehyde | Servicebio | G1101 | Fixation |
Micro Computed Tomography | SkyScan | SkyScan1176 | |
Ethylene Diamine Tetraacetic Acid | Servicebio | G1105 | Decalcification |
Paraffin | Servicebio | #0001 | |
Paraffin slicing machine | Leica | RM2125RTS | |
Glass slide | Servicebio | G6004 | |
Cover glass | Servicebio | 200 | |
HE staining kit | Servicebio | #1-5 | HE staining |
Light microscope | Nikon | E200 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone