Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We describe an in-solution method to apply uniform shear to platelet surface receptors using cone-plate viscometry. This method may also be used more broadly to apply shear to other cell types and cell-fragments and need not target a specific ligand-receptor pair.
Many biological cells/tissues sense the mechanical properties of their local environments via mechanoreceptors, proteins that can respond to forces like pressure or mechanical perturbations. Mechanoreceptors detect their stimuli and transmit signals via a great diversity of mechanisms. Some of the most common roles for mechanoreceptors are in neuronal responses, like touch and pain, or hair cells which function in balance and hearing. Mechanosensation is also important for cell types which are regularly exposed to shear stress such as endothelial cells, which line blood vessels, or blood cells which experience shear in normal circulation. Viscometers are devices that detect the viscosity of fluids. Rotational viscometers may also be used to apply a known shear force to fluids. The ability of these instruments to introduce uniform shear to fluids has been exploited to study many biological fluids including blood and plasma. Viscometry may also be used to apply shear to the cells in a solution, and to test the effects of shear on specific ligand-receptor pairs. Here, we utilize cone-plate viscometry to test the effects of endogenous levels of shear stress on platelets treated with antibodies against the platelet mechanosensory receptor complex GPIb-IX.
Mechanoreceptors are proteins that respond to mechanical stimuli, such as pressure or mechanical perturbation/deformation. For some mechanoreceptors, sensing these mechanical perturbations is explicit to the function of the cell types in which they are expressed. Take, for example, the stretch receptors in baroreceptor neurons; these mechanosensitive ion channels regulate blood pressure by sensing vascular "stretch"1,2. In the inner ear, ion channels on hair cells detect mechanical deformations caused by sound waves3, and cutaneous low threshold mechanoreceptors (LTMRs) facilitate the transmission of tactile information4. In other cases, mechanoreceptors provide important information to the cell for the establishment of adhesion or growth. Cells can sense the rigidity of their local environment, and may rely on contractile forces via the actin cytoskeleton and integrins to dictate growth or spreading5,6.
When studying receptor-ligand interactions in cell or tissue-based models, common assays exist which can quickly and accurately report the effects of altering temperature, pH, ligand concentration, tonicity, membrane potential, and many other parameters which can vary in vivo. However, these same assays may fall short when it comes to detecting the contribution of mechanical force to receptor activation. Whether cells are sensing their microenvironment, detecting sound waves, or responding to stretch, one thing the aforementioned mechanoreceptors have in common is that they are participating in interactions where the ligand, receptor, or both, are anchored to a surface. Assays developed to test the effects of mechanical forces on receptor interactions often reflect this paradigm. Microfluidics and flow chambers are used to study the effects of shear flow on cells and receptors7,8. These types of experiments have the advantage of allowing fine-tuning of shear rates via established flow speeds. Other techniques employ fluorescent molecular probes to detect forces applied by cells on ligand-rich surfaces, yielding an accurate readout of the magnitude and orientations of forces involved in the interaction9,10.
In addition to mechanosensation occurring where one or both partners are anchored to a surface, shear stress may affect proteins and cells in solution. This is often observed in blood cells/proteins which are constantly in the circulation, and may manifest via activation of mechanoreceptors that are normally surface-anchored11, or through exposure of target sequences which would be occluded under static conditions12. However, relatively fewer techniques assay the effects of shear force on particles in solution. Some in-solution approaches introduce shear via vortexing cells in fluid suspension with varying speeds and durations, although these approaches may not allow a very precise determination of the shear stress generated. Rotational viscometers measure viscosity by applying a specific shear force to fluids. Herein we describe an applied method for determining the effect of specific laminar shear rates on cells or cell fragments in solution.
One of the most highly expressed proteins on the platelet surface is the glycoprotein (GP) Ib-IX complex. GPIb-IX is the primary receptor for the plasma protein von Willebrand Factor (VWF). Together, this receptor-ligand pair has long been recognized as the foundation of the platelet response to shear stress13. In the event of vascular damage, VWF binds to exposed collagen in the sub-endothelial matrix14, thus recruiting platelets to the site of injury via the VWF-GPIb-IX interaction. VWF engagement to its binding site in the GPIbα subunit if GPIb-IX under physiological shear stress induces unfolding of a membrane-proximal mechanosensory domain (MSD) which in turn activates GPIb-IX15. In a recent study, we have shown that antibodies against GPIbα, like those generated in many immune thrombocytopenia (ITP) patients, are also capable of inducing platelet signaling via MSD unfolding under shear stress11. However, unlike VWF, which facilitates shear-induced GPIb-IX activation by immobilizing the complex under normal circulation, the bivalent antibodies are able to crosslink platelets via GPIb-IX and unfold the MSD in circulation. In this way, a mechanoreceptor which is normally activated by surface immobilization under shear can be activated in solution. In the present report, we will demonstrate how a viscometer-based uniform shear assay was leveraged to detect the effects of specific levels of shear stress on receptor activation in solution.
All methods using donor-derived human platelets described herein were approved by the Institutional Review Board of Emory University/Children's Healthcare of Atlanta.
1. Blood Draw and Platelet Isolation
2. Ligand and uniform shear treatment
NOTE: All steps in section 2 that require pipetting should be done slowly, so as not to introduce any shear.
3. Detection of surface markers and crosslinking via flow cytometry
Figure 1 outlines how the trigger model of GPIb-IX activation, initially introduced to explain shear-dependent receptor activation when anchored to the vessel wall, may also support activation of platelets crosslinked by a multivalent ligand. Figure 2 shows readouts of human platelet activation treated by two antibodies targeting the N-terminal domain of GPIb-IX (6B4 and 11A8), and one control antibody (normal IgG) under sheared and static conditions. In
The protocol described in this manuscript allows quick and versatile assessment of the effect of laminar shear on platelet and cell surface receptors. The specific representative results presented here underscore how the effects of multimeric or bivalent ligands can be affected by shear flow. In addition to this application, a uniform shear assay has broad applications in observing shear-dependent effects. In the absence of a known ligand-receptor pair, a uniform shear assay can also detect the effects of shear on factor...
The authors have nothing to disclose.
Work pertinent to this study was supported in part by National Institutes of Health (NIH) National Heart, Lung, and Blood Institute grants HL082808, HL123984 (R.L.), and F31HL134241 (M.E.Q.). Funding also provided by NIH National Institute of General Medical Sciences grant T32GM008367 (M.E.Q.); and pilot grant funds from Children’s Healthcare of Atlanta and Emory University Pediatric Flow Cytometry Core. The authors would like to thank Dr. Hans Deckmyn for sharing the 6B4 antibody, and the Emory Children's Pediatric Research Center Flow Cytometry Core for technical support.
Name | Company | Catalog Number | Comments |
APC anti-human CD62P (P-Selectin) | BioLegend | 304910 | |
Brookfield Cap 2000+ Viscometer | Brookfield | - | |
FITC-conjugated Erythrina cristagalli lectin (ECL) | Vector Labs | FL-1141 | |
Pooled Normal Human Plasma | Precision Biologic | CCN-10 | |
Vacutainer Light Blue Blood Collection Tube (Sodium Citrate) | BD | 369714 | |
Vacutainer Blood Collection Set, 21G x ¾" Needle | BD | 367287 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone