Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The aim of this method is to generate an in vivo model of tumor angiogenesis by xenografting mammalian tumor cells into a zebrafish embryo that has fluorescently-labelled blood vessels. By imaging the xenograft and associated vessels, a quantitative measurement of the angiogenic response can be obtained.
Tumor angiogenesis is a key target of anti-cancer therapy and this method has been developed to provide a new model to study this process in vivo. A zebrafish xenograft is created by implanting mammalian tumor cells into the perivitelline space of two days-post-fertilization zebrafish embryos, followed by measuring the extent of the angiogenic response observed at an experimental endpoint up to two days post-implantation. The key advantage to this method is the ability to accurately quantitate the zebrafish host angiogenic response to the graft. This enables detailed examination of the molecular mechanisms as well as the host vs tumor contribution to the angiogenic response. The xenografted embryos can be subjected to a variety of treatments, such as incubation with potential anti-angiogenesis drugs, in order to investigate strategies to inhibit tumor angiogenesis. The angiogenic response can also be live-imaged in order to examine more dynamic cellular processes. The relatively undemanding experimental technique, cheap maintenance costs of zebrafish and short experimental timeline make this model especially useful for the development of strategies to manipulate tumor angiogenesis.
Angiogenesis is one of the classic hallmarks of cancer and represents a target of anti-cancer therapy1,2. To study this process, xenograft models of cancer have been created by implanting mammalian tumor cells into animals such as mice3. A zebrafish xenograft model has also been developed, which involves the implantation of tumor cells into 2 days post fertilization (dpi) zebrafish which results in rapid growth of zebrafish blood vessels into the xenograft4.
This protocol describes an in vivo zebrafish embryo tumor xenograft model in which the angiogenic response can be accurately quantitated across the entire xenograft. This method allows the investigator to examine, in vivo, the molecular mechanisms that underpin the tumor angiogenic response. The genetic tractability of the zebrafish allows the host contribution to be interrogated, while selection of different tumor cell lines allows the tumor contribution to angiogenesis to also be examined5,6,7. In addition, as zebrafish larvae are permeable to small molecules, specific pathway inhibitors can be used or drug libraries can be screened to identify novel inhibitors of tumor angiogenesis8,9,10,11.
The zebrafish embryo xenograft model presents unique advantages compared with other mammalian xenograft models. Zebrafish xenografts are cheaper and easier to perform, large numbers of animals can be examined and live cell imaging allows detailed examination of cell behaviour4. Unlike other in vivo models, which require up to several weeks to observe significant vessel growth, angiogenesis in zebrafish xenografts can be observed within 24 h following implantation3,4. However, the lack of an adaptive immune system in embryonic zebrafish, while beneficial to maintaining the xenograft, means that the adaptive immune response and its contribution towards tumor angiogenesis cannot be examined. In addition, the lack of tumor stromal cells, the inability to orthotopically implant the tumor and the difference in maintenance temperature between zebrafish and mammalian cells are potential weaknesses of this method. Nonetheless, the amenability of this model for live imaging and the ability to accurately quantitate the angiogenic response makes it uniquely beneficial for studying the cellular processes that regulate tumor angiogenesis in vivo.
Access restricted. Please log in or start a trial to view this content.
1. Preparation of Microinjection Needles
2. Cell Culture for Implantation
NOTE: When using this protocol, any mammalian cancer cell line can be used for implantation into zebrafish embryos as xenografts. However, there is much variation in the angiogenic response induced among different cell lines5,11,12. B16-F1 murine melanoma cells have been shown to induce a strong angiogenic response in zebrafish embryos11 and are therefore appropriate for use in this protocol.
3. Labelling B16-F1 Cells with Fluorescent Dye
NOTE: In order to differentiate between the implanted tumor cells and other cells in the embryo, the tumor cells must be labelled with an appropriate fluorescent dye before implantation. This step can be skipped if the cells already express fluorescent reporters.
4. Preparation of Embryos for Implantation
NOTE: Choose a transgenic zebrafish line that has fluorescently labelled blood vessels (e.g. kdrl:RFP, fli1a:EGFP, etc.)13,14.
5. Perivitelline Injection of Mammalian Cancer Cells into 2 dpf Embryos
NOTE: To ensure the cells clump together as a graft when implanted, the cells must be mixed together with an extracellular matrix mixture (ECM). We have described the steps of making such a cell/ECM mixture when using an ECM mixture referenced in the Table of Materials. If an alternative matrix is used, the steps should be adjusted accordingly.
6. Live Imaging
7. Time Lapse Imaging
NOTE: This model is highly suited to imaging dynamic cellular processes due to its transparency and the availability of zebrafish transgenics that fluorescently label different cell types. This makes time-lapse imaging a key application of this model.
8. Quantitation of the Angiogenic Response to the Zebrafish Xenograft
NOTE: The following steps use 3D image analysis software. Specific steps will vary depending on the software used.
Access restricted. Please log in or start a trial to view this content.
By imaging an individual xenograft at 6, 24 and 48 hpi, the angiogenic response at different timepoints can be calculated as shown in Figure 1A-C. The largest angiogenic response is observed between 24-48 h post implantation, with the maximum levels of graft vascularization seen around 2 dpi (Figure 1A-C). A time-lapse movie of a typical angiogenic response to a B16-F1 xenograft from 20.75 hpi un...
Access restricted. Please log in or start a trial to view this content.
The first critical step in the protocol is the implantation of tumor cells. It is essential that cells are injected into a location that will allow the xenograft to implant successfully in the embryo without making the embryo edematous. An injection that is too anterior can allow the cells to move towards the heart, blocking the bloodstream and leading to edema, while an injection that is too posterior will result in a poorly implanted xenograft. An anterior injection is best avoided by inserting the needle through the y...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
We thank Mr. Alhad Mahagaonkar for managing the University of Auckland zebrafish facility and the Biomedical Imaging Research Unit, School of Medical Sciences, University of Auckland, for assistance in time-lapse confocal microscopy. This work was supported by a Health Research Council of New Zealand project grant (14/105), a Royal Society of New Zealand Marsden Fund Project Grant (UOA1602) and an Auckland Medical Research Foundation Project Grant (1116012) awarded to J.W.A.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Air cylinder | BOC | 011G | Xenotransplantation |
B16-F1 cells | ATCC | Cell culture | |
BD Matrigel LDEV-free (extracellular matrix mixture) | Corning | 356235 | Xenotransplantation |
Borosillicate glass capillaries | Warner Instruments | G100T-4 | OD = 1.00 mm, ID = 0.78 mm, Length = 10 cm Cell injection |
Cell culture dish 35 mm diameter | Thermofisher NZ | NUN153066 | Fish husbandry |
Cell culture dish 100 mm diameter | Sigma-Aldrich | CLS430167-500EA | Fish husbandry |
Cell culture flask 75 cm2 | In Vitro Technologies | COR430641 | Cell culture |
CellTracker Green | Invitrogen | C2925 | Cell labelling, Stock concentration (10 mM in DMSO), working concentration (0.2 μM in serum-free media) |
Dimethyl sulfoxide | Sigma-Aldrich | D8418 | Drug treatment, Cell labelling |
E3 Media (60x in 2 L of water) 34.8 g NaCl 1.6 g KCl 5.8 g CaCl2·2H2O 9.78 g MgCl2·6H2O adjust to pH 7.2 with NaOH | In house [1] | Fish husbandry | |
Ethyl-3-aminobenzoate methanesulfonate (Tricaine) | Sigma-Aldrich | E10521 | Xenotransplantation, Imaging |
Filter tip 1,000 μL | VWR | 732-1491 | Used during multiple steps |
Filter tip 200 μL | VWR | 732-1489 | Used during multiple steps |
Filter tip 10 μL | VWR | 732-1487 | Used during multiple steps |
Fluorescence microscope | Leica | MZ16FA | Preparation of embryos |
FBS (NZ origin) | Thermofisher Scientific | 10091148 | Cell culture |
Gloves | Any commercial brand | Used during multiple steps | |
Haemocytometer cell counting chamber Improved Neubauer | HawksleyVet | AC1000 | Xenotransplantation |
Heraeus Multifuge X3R Centrifuge | Thermofisher Scientific | 75004500 | Cell culture, Cell labelling |
Hoechst 33342 | Thermofisher Scientific | 62249 | Cell labelling, Stock concentration (1 mg/ml in DMSO), working concentration (6 μg/ml in serum-free media) |
Low Melting Point, UltraPure Agarose | Thermofisher Scientific | 16520050 | Imaging |
Methycellulose | Sigma-Aldrich | 9004 67 5 | Xenotransplantation |
Methylene blue | sigma-Aldrich | M9140 | Fish husbandry |
Microloader 0.5-20 μL pipette tip for loading microcapillaries | Eppendorf | 5242956003 | Xenotransplantation |
Micropipettes | Any commercial brand | Used during multiple steps | |
Micropipette puller P 87 | Sutter Instruments | Xenotransplantation | |
Microscope cage incubator | Okolab | Time-lapse imaging | |
Microwave | Any commercial brand | Imaging | |
Mineral oil | Sigma-Aldrich | M3516 | Xenotransplantation |
Minimal Essential Media (MEM) - alpha | Thermofisher Scientfic | 12561056 | Cell Culture |
MPPI-2 Pressure Injector | Applied Scientific Instrumentation | Xenotransplantation | |
Narishige micromanipulator | Narishige Group | Xenotransplantation | |
Nikon D Eclipse C1 Confocal Microscope | Nikon | Imaging | |
N-Phenylthiourea (PTU) | Sigma-Aldrich | P7629 | Fish husbandry |
PBS | Gibco | 10010023 | Cell culture |
Penicillin Streptomycin | Life Technologies | 15140122 | Cell culture |
S1 pipet filler | Thermoscientific | 9501 | Cell culture |
Serological stripette 10 mL | Corning | 4488 | Cell culture |
Serological stripette 25 mL | Corning | 4489 | Cell culture |
Serological stripette 5 mL | Corning | 4485 | Cell culture |
Serological stripette 2 mL | Corning | 4486 | Cell culture |
Terumo Needle 22 G | Amtech | SH 182 | Fish husbandry |
Tissue culture incubator | Thermofisher Scientfic | HeraCell 150i | Cell culture |
Tivozanib (AV951) | AVEO Pharmaceuticals | Drug treatment | |
Transfer pipette 3 mL | Mediray | RL200C | Fish husbandry |
Trypsin/EDTA (0.25%) | Life Technologies | T4049 | Cell culture |
Tweezers | Fine Science Tools | 11295-10 | Fish husbandry |
Volocity Software (v6.3) | Improvision/Perkin Elmer | Image analysis |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone