JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

The primary goal of this study is to describe a protocol to prepare polymeric fiber mats with consistent morphology via solution blow spinning (SBS). We aim to use SBS to develop novel, tunable, flexible polymeric fiber nanocomposites for various applications, including protective materials, by incorporating nanoparticles in a polymer-elastomer matrix.

Streszczenie

Light-weight, protective armor systems typically consist of high modulus (>109 MPa) and high-strength polymeric fibers held in place with an elastic resin material (binder) to form a non-woven, unidirectional laminate. While significant efforts have focused on improving the mechanical properties of the high-strength fibers, little work has been undertaken to improve the properties of the binder materials. To improve the performance of these elastomeric polymer binders, a relatively new and simple fabrication process, known as solution blow spinning, was used. This technique is capable of producing sheets or webs of fibers with average diameters ranging from the nanoscale to the microscale. To achieve this, a solution blow spinning (SBS) apparatus has been designed and built in the laboratory to fabricate non-woven fiber mats from polymer elastomer solutions.

In this study, a commonly used binder material, a styrene-butadiene-styrene block-co-polymer dissolved in tetrahydrofuran, was used to produce nanocomposite fiber mats by adding metallic nanoparticles (NPs), such as iron oxide NPs, that were encapsulated with silicon oil and thus incorporated in the fibers formed via the SBS process. The protocol described in this work will discuss the effects of the various critical parameters involved in the SBS process, including the polymer molar mass, the selection of the thermodynamically appropriate solvent, the polymer concentration in solution, and the carrier gas pressure to assist others in performing similar experiments, as well as provide guidance to optimize the configuration of the experimental setup. The structural integrity and morphology of the resultant non-woven fiber mats were examined using scanning electron microscopy (SEM) and elemental X-ray analysis via energy-dispersive X-ray spectroscopy (EDS). The goal of this study is to evaluate the effects of the various experimental parameters and material selections to optimize the structure and morphology of the SBS fiber mats.

Wprowadzenie

Many light-weight, ballistic, protective armor systems are currently constructed using high-modulus and high-strength polymeric fibers, such as oriented, ultra-high molar mass polyethylene fibers or aramids, which provide outstanding ballistic resistance1,2. These fibers are used in combination with an elastic resin material (binder) that can penetrate to the filament level and secure the fibers in a 0°/90° configuration to form a non-woven, unidirectional laminate. The percentage of the polymer elastomer resin (binder) should not exceed 13% of the total weight of the unidirectional laminate to maintain the structural integrity and antiballistic properties of the laminate structure3,4. The binder is a very important component of the armor as it keeps the high-strength fibers properly oriented and tightly packed within each laminate layer3. Elastomer materials commonly used as binders in body armor applications have very low tensile modulus (e.g., ~17.2 MPa at ~23 °C), low glass transition temperature (preferably below -50 °C), very high elongation at break (as high as 300%) and must demonstrate excellent adhesive properties5.

To improve the performance of these polymer elastomers, SBS was performed to create fibrous elastomer materials that can be used as binders in body armor applications. SBS is a relatively new, versatile technique allowing the use of different polymer/solvent systems and the creation of different end products6,7,8,9,10,11,12,13. This simple process involves the rapid (10x the rate of electrospinning) deposition of conformal fibers onto both planar and nonplanar substrates to fabricate sheets or webs of fibers that encompass nano and micro length scales14,15,16,17,18. SBS materials have numerous applications in medical products, air filters, protective equipment, sensors, optical electronics, and catalysts14,19,20. Developing small diameter fibers can drastically increase the surface area to volume ratio, which is very important for several applications, especially in the personal protective equipment field. The diameter and morphology of the fibers generated by SBS depend on the molar mass of the polymer, polymer concentration in the solution, viscosity of the solution, polymer solution flow rate, gas pressure, working distance, and diameter of the spray nozzle14,15,17.

An important characteristic of the SBS apparatus is the spray nozzle consisting of an inner and a concentric outer nozzle. The polymer dissolved in a volatile solvent is pumped through the inner nozzle while a pressurized gas flows through the outer nozzle. The high-velocity gas exiting the outer nozzle induces shearing of the polymer solution flowing through the inner nozzle. This forces the solution to form a conical shape when exiting the spray nozzle. When the surface tension at the tip of the cone is overcome, a fine stream of polymer solution is ejected, and the solvent rapidly evaporates causing polymer strands to coalesce and deposit as polymer fibers. The formation of a fibrous structure, as solvent evaporates, strongly depends on the polymer molar mass and the solution concentration. Fibers are formed by chain entanglement, when polymer chains in solution begin to overlap at a concentration known as the critical overlap concentration (c*). Therefore, it is necessary to work with polymer solutions above the c* of the polymer/solvent system selected. Also, an easy strategy to attain this is to choose polymers with relatively high molar mass. Polymers with higher molar mass have increased polymer relaxation times, which is directly related to an increase in the formation of fibrous structures, as described in the literature21. As many of the parameters used in SBS are strongly correlated, the goal of this work is to provide guidance to develop tunable, and flexible polymeric fiber nanocomposites to be used as alternatives for typical binder materials found in body armor applications by incorporating nanoparticles in the fibrous polymer-elastomer matrix.

Protokół

NOTE: Details related to the equipment, instrumentation, and chemicals used in this section can be found in the Table of Materials. This entire protocol should first be reviewed and approved by the institutional safety department/personnel to ensure procedures and processes specific to the institution are adhered to.

1. Preparation of polymer solution using the appropriate solvent

NOTE: Consult manufacturer/supplier safety data sheets and the institution's safety department/personnel regarding proper personal protective equipment (PPE) to use with each chemical/material.

  1. Use a clean small laboratory spatula, and transfer the desired amount (e.g., ~2 g) of dry polymer (poly(styrene-butadiene-styrene)) into a clean, empty, 20 mL borosilicate glass vial. Seal the vial, and store under ambient laboratory conditions.
    NOTE: The selected concentration for poly(styrene-butadiene-styrene) in tetrahydrofuran (THF) was approximately 200 mg/mL. This concentration is used as an example throughout this protocol; the optimal concentration will depend on the polymer/solvent system used.
  2. Transfer the borosilicate glass vial containing the polymer sample into a chemical fume hood, and pipette 10 mL ± 0.1 mL of the desired solvent, in this case THF, into the vial to achieve the desired concentration of nominally 200 mg/mL.
  3. Seal the solvent (THF) container, and transfer it to the storage cabinet. Cap the borosilicate glass vial containing the polymer/solvent sample with the provided lid, and carefully mount it on a mixer/rotator.
  4. Agitate the mixture at room temperature using a rotator at 70 rpm until the polymer fully dissolves in the solvent.
    NOTE: The solution appears clear and transparent after approximately 60 min, denoting complete polymer dissolution.
  5. Transfer the solution into a dissolved gas analysis (DGA) borosilicate glass syringe for SBS.
    ​NOTE: Polymer solutions can be stored and used for up to 72 h, provided that the borosilicate glass vial is securely capped, and the opening is wrapped using a paraffin wax film. However, the solutions must be agitated again before performing SBS.

2. Determination of critical overlap polymer concentration by viscosity measurement

NOTE: This step is provided here to determine the critical overlap polymer concentration, which is an important parameter that affects the overall fiber quality and morphology after SBS. See the representative results and discussion sections for details.

  1. Prepare eight nominal concentrations (1 mg/mL, 3 mg/mL, 5 mg/mL, 10 mg/mL, 20 mg/mL, 30 mg/mL, 40 mg/mL, 50 mg/mL) of the polymer solution in THF with an approximate volume of 10 mL. Follow the same procedure as in steps 1.1 and 1.2 to prepare the solutions.
  2. Prepare the rheometer for measurements.
    ​NOTE: Routine calibration and verification checks for torque, normal force, and phase angle should be performed on the rheometer prior to the following setup procedure.
    1. Install the environmental control device on the rheometer for temperature control.
    2. Install the rheometer geometry, i.e., recessed concentric cylinders on the rheometer. First, insert and install the lower geometry (cup) into the environmental control device and then the upper geometry (bob) on the transducer shaft.
    3. Tare normal force and torque using the instrument touch screen. Zero the geometry gap using the gap control function of the rheometer software. Raise the stage to provide enough space for sample loading.
  3. Load the polymer solution into the cup using a high-quality, disposable borosilicate glass pipette (minimum sample volume for the geometry ~7 mL). Set the gap to the operating gap (3.6 mm) for the measurement.
  4. Perform a shear rate sweep test from about 10 s-1 to 100 s-1 at approximately 25 °C. Enable the steady-state sensing function in the rheometer software.
  5. Export the results table, and calculate the average value of the steady-shear viscosities.
  6. Plot the averaged viscosity values as a function of polymer concentration.

3. Preparation of the polymer solution/nanoparticle dispersion

NOTE: To prepare a polymer solution with added nanoparticles (NPs), work inside a nano-enclosure (high-efficiency-particulate-air-filtered) hood.

  1. Use a clean, small laboratory spatula, and weigh the required amount (e.g., ~0.01 g) of dry NP powder, e.g., iron oxide (Fe3O4) NPs, into a clean 20 mL borosilicate glass vial.
  2. Add the desired volume (e.g., nominally 10 mL) of solvent (e.g., THF) using a disposable borosilicate glass pipette, and cap the borosilicate glass vial containing the NPs/solvent mixture using the provided lid.
  3. Transfer the sample to a vortex mixer, and agitate thoroughly at room temperature at 3,000 rpm until the NPs are no longer visible at the bottom of the vial. Immediately transfer the vial with the sample to a bath sonicator to ensure full dispersion of the nanoparticles. To prevent sample from heating, sonicate the dispersion in ~30 min intervals, waiting for 2-5 min between each sonication step.
  4. Next, working inside a chemical hood, weigh and add the desired amount (e.g., ~2 g) of polymer (e.g., styrene-butadiene-styrene block-co-polymer) into the NP dispersion. Seal the borosilicate glass vial with the provided lid, and mount it securely on a rotator for mixing at 70 rpm at room temperature.
  5. Mix the polymer/NPs/solvent sample thoroughly for approximately 60 min, or until the polymer is fully dissolved.
    NOTE: After mixing, the sample appears as a viscous liquid with uniformly dispersed NPs, and no large aggregates or precipitates are visible.
  6. Finally, transfer the mixture into a DGA borosilicate glass syringe for SBS.
    ​NOTE: It is not recommended to store the polymer NP solutions prior to SBS due to potential agglomeration or destabilization of the dispersion.

4. Solution blow spinning process (SBS)

NOTE: Suggested PPE for this process includes protective goggles, laboratory coat, and nitrile gloves; these should be donned before setting up the SBS apparatus. The setup and process should be performed inside a chemical hood. The SBS apparatus consists of a commercial airbrush unit equipped with a 0.3 mm inner nozzle (for the polymer solution) and a 1 mm head opening (for the gas), a syringe pump system, a collector, a pressurized nitrogen (N2) gas cylinder, and an aluminum enclosure. The inner nozzle protrudes approximately 0.5 mm from the head opening of the airbrush. Details on the SBS setup are given in Figure 1.

  1. First, adjust the height and angle of the airbrush to align with the center of the selected substrate (glass microscope slide) attached to the collector, and secure it in place. Make sure the gas cylinder is properly secured to its wall mount. Then, connect the gas inlet of the airbrush to the N2 pressurized gas cylinder.
  2. Turn on the main valve on the gas cylinder, and slowly adjust the pressure using the attacjed gas regulator valve while monitoring the pressure gauge to achieve the desired flow. Ensure there is free unobstructed flow through the system, and listen carefully for any potential gas leaks at the connection points. Use a soap and water solution to further investigate potential leaks, and if necessary, apply polytetrafluoroethylene (PTFE) tape to the fittings to eliminate any leaks. When the gas flow is adjusted properly, close the main valve on the gas cylinder to stop the gas flow.
  3. Secure the substrate on the collector using the equipped vice. Adjust the height of the collector to align perpendicular to the spray direction and pattern of the airbrush so that material will be deposited onto the substrate.
  4. Next, slide the collector to its furthest position away from the airbrush nozzle to help with identifying the optimal working distance (separation between nozzle and substrate) in the following steps.
  5. Working inside the chemical hood, carefully transfer the prepared polymer/NPs/solvent mixture from the borosilicate glass vial to a 10 mL DGA borosilicate glass syringe equipped with a stainless-steel needle.
  6. Remove any air bubbles from the sample by holding the syringe with the needle pointing up, tapping the syringe gently and slowly depressing the plunger to displace any excess air. Detach the needle, and attach the syringe to the syringe-pump unit. Secure the syringe, and connect the PTFE tubing coming from the outlet of the syringe to the appropriate inlet on the airbrush.
  7. Next, select the desired injection rate from the syringe-pump unit menu (e.g., 0.5 mL/min), and slowly open the main valve on the N2 gas cylinder to allow N2 to flow through the airbrush. Immediately start the syringe-pump unit to dispense the polymer/NPs/solvent mixture, and initiate the spraying process.
  8. Carefully observe the spraying pattern at the spray nozzle, and ensure that no clogs or partial clogs are present. Incrementally increase or decrease the injection rate until the solution is spraying freely.
    NOTE: Very low or high injection rates are prone to clogging. The optimal injection rate is a function of the solution's viscosity and may need to be adjusted for high or low polymer solution's concentrations.
  9. Next, adjust the position of the collector to the desired working distance for the polymer/solvent system used to allow solvent evaporation by sliding it towards the airbrush until material is deposited on the substrate.
    ​NOTE: If the collector is too close to the airbrush spray nozzle, insufficient evaporation time will result in depositing liquid polymer solution onto the substrate. If the collector is too far away, very limited or no material will be deposited onto the substrate. For poly(styrene-butadiene-styrene) solutions in THF, the appropriate working distance is between 8 cm and 12 cm.
  10. When the desired amount of material is deposited on the substrate, stop the syringe-pump unit first, and then immediately close the main valve on the N2 gas cylinder.

5. Analysis of SBS fiber mats by SEM

  1. Use a sputter coater to coat the fiber mats with a conductive material such as Au/Pd to mitigate surface charging effects under the electron beam.
    NOTE: A coating thickness of 4-5 nm will suffice.
  2. Load the fiber mat samples into an SEM, and image them using an accelerating voltage of 2-5 kV and a current of 0.1-0.2 nA. Apply charge neutralization settings to counter charging effects where necessary.
  3. Use a secondary electron detector, or a backscattered electron detector, to capture different features of the fiber materials.
  4. Use an energy-dispersive (EDS) detector to separate the characteristic X-rays of different elements into an energy spectrum that will allow determination of the presence of iron (Fe), indicative of iron oxide NPs embedded within the polymeric fiber mats.

Wyniki

In this study, non-woven fiber mats consisting of poly(styrene-butadiene-styrene) fibers in the nano- and micro-scale, were synthesized with and without the presence of iron oxide NPs. To form fibers, the SBS parameters must be carefully selected for the polymer/solvent system used. The molar mass of the dissolved polymer and the solution concentration are critical in controlling the morphology of the structures produced by the SBS process. In this study, a poly(styrene-butadiene-styrene) block-co-polymer (styrene 30 wt....

Dyskusje

The method described herein provides a protocol for producing polymer elastomer nanocomposite fiber mats via a relatively new technique known as solution blow spinning. This technique allows the fabrication of fibers in the nanoscale and has several advantages over other well-established techniques, such as the electrospinning process, as it can be carried out under atmospheric pressure and room temperature27. Furthermore, SBS is not highly susceptible to local environmental changes (temperature o...

Ujawnienia

The full description of the procedures used in this paper requires the identification of certain commercial products and their suppliers. The inclusion of such information should in no way be construed as indicating that such products or suppliers are endorsed by NIST or are recommended by NIST or that they are necessarily the best materials, instruments, software or suppliers for the purposes described.

Podziękowania

The authors would like to acknowledge Mr. Dwight D. Barry for his important contributions for fabrication of the solution blow spinning apparatus. Zois Tsinas and Ran Tao would like to acknowledge funding from the National Institute of Standards and Technology under Awards # 70NANB20H007 and # 70NANB15H112, respectively.

Materiały

NameCompanyCatalog NumberComments
45 MM Toolmaker ViseTormach Inc.32547To secure substrate onto the collector
ARES-G2 RheometerTA Instruments401000.501Rheometer
Branson Ultrasonics M Series - Ultrasonic Cleaning BathFisher Scientific15-336-100To disperse nanoparticles
Cadence Science Micro-Mate Interchangeable SyringeFisher Scientific14-825-2AGlass Syringe 5mL in 1/5mL, Luer Lock Tip
Chemical hoodAny company
Corning - Disposable Pasteur Glass PipetteSigma AldrichCLS7095D5X-200EANon-Sterile
DWK Life Sciences Wheaton - Glass Scintillation VialFisher Scientific03-341-25G20 mL with cap
FEI Quanta 200 Scanning Electron Microscope (SEM)FEIFor imaging samples
Iron Oxide Nanopowder/NanoparticlesUS Research Nanomaterials, inc.US3320Fe3O4, 98%, 20-3- nm, Silicon oil Coated
KD Scientific Legato 100 Single-Syringe PumpSigma AldrichZ401358-1EASingle syringe infusion pump
Master Airbrush - Model S68TCP GlobalMAS S68Nozzle/needle diameter: 0.35 mm
Mettler Toledo AB265-S/FACT ScaleCole-Parmer ScientificEW-11333-14For weighing polymer and  Nanoparticles
N2 Gas RegulatorAny company
NanoenclosureAny company
Optical Microscopy Glass SlidesFisher Scientific12-550-A3Used as a substrate for fiber mat deposition
OSP Slotted Bob, 33 mmTA Instruments402796.902Bob, upper geometry
OSP Slotted Double Gap Cup, 34 mmTA Instruments402782.901Double wall cup, lower geometry
Oxford BenchMate Digital Vortex MixerPipetteVM-DRated up to 4,200 rpm, for mixing solutions
Oxford Benchmate Tube RollerPipetteOTR-24DRSample mixer/rotator
Polystyrene-block-polybutadiene-block-polystyreneSigma Aldrich432490-1KGstyrene 30 wt. %, Mw ~ 185,000 g/mol
SEM Pin Stub Specimen MountTed Pella Inc.1611918 mm diameter x 8 mm height
SpatulaVWR82027-532To load test materials
Tetrahydrofuran (THF)Fisher ScientificT425-1solvent, HPLC grade
TRIOSTA Instrumentsv4.3.1.39215Rheometer software

Odniesienia

  1. Lee, B. L., et al. Penetration failure mechanisms of armor-grade fiber composites under impact. Journal of Composite Materials. 35 (18), 1605-1633 (2001).
  2. Prevorsek, D. C., Kwon, Y. D., Chin, H. B. Analysis of the temperature rise in the projectile and extended chain polyethylene fiber composite armor during ballistic impact and penetration. Polymer Engineering and Science. 34 (2), 141-152 (1994).
  3. Park, A. D., Park, D., No Park, A. J. . U.S. Patent. , (2006).
  4. No Park, A. D. . U.S. Patent. , (1995).
  5. Harpell, G. A., Prevorsek, D. C., Li, H. L. Flexible multi-layered armor. Patent No. WO/1989. , (1989).
  6. Cena, C., et al. BSCCO superconductor micro/nanofibers produced by solution blow-spinning technique. Ceramics International. 43 (10), 7663-7667 (2017).
  7. Miller, C. L., Stafford, G., Sigmon, N., Gilmore, J. A. Conductive nonwoven carbon nanotube-PLA composite nanofibers towards wound sensors via solution blow spinning. IEEE Transactions on Nanobioscience. 18 (2), 244-247 (2019).
  8. Iorio, M., et al. Conformational changes on PMMA induced by the presence of TiO 2 nanoparticles and the processing by Solution Blow Spinning. Colloid and Polymer Science. 296 (3), 461-469 (2018).
  9. Martínez-Sanz, M., et al. Antimicrobial poly (lactic acid)-based nanofibres developed by solution blow spinning. Journal of Nanoscience and Nanotechnology. 15 (1), 616-627 (2015).
  10. Wang, H., et al. Highly flexible indium tin oxide nanofiber transparent electrodes by blow spinning. ACS Applied Materials and Interfaces. 8 (48), 32661-32666 (2016).
  11. Greenhalgh, R. D., et al. Hybrid sol-gel inorganic/gelatin porous fibres via solution blow spinning. Journal of Materials Science. 52 (15), 9066-9081 (2017).
  12. Gonzalez-Abrego, M., et al. Mesoporous titania nanofibers by solution blow spinning. Journal of Sol-Gel Science and Technology. 81 (2), 468-474 (2017).
  13. Oliveira, J. E., Zucolotto, V., Mattoso, L. H., Medeiros, E. S. Multi-walled carbon nanotubes and poly (lactic acid) nanocomposite fibrous membranes prepared by solution blow spinning. Journal of Nanoscience and Nanotechnology. 12 (3), 2733-2741 (2012).
  14. Medeiros, E. S., Glenn, G. M., Klamczynski, A. P., Orts, W. J., Mattoso, L. H. Solution blow spinning: A new method to produce micro-and nanofibers from polymer solutions. Journal of Applied Polymer Science. 113 (4), 2322-2330 (2009).
  15. Vasireddi, R., et al. Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle. Scientific Reports. 9 (1), 1-10 (2019).
  16. Tutak, W., et al. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Biomaterials. 34 (10), 2389-2398 (2013).
  17. Daristotle, J. L., Behrens, A. M., Sandler, A. D., Kofinas, P. A review of the fundamental principles and applications of solution blow spinning. ACS Applied Materials and Interfaces. 8 (51), 34951-34963 (2016).
  18. Hofmann, E., et al. Microfluidic nozzle device for ultrafine fiber solution blow spinning with precise diameter control. Lab on a Chip. 18 (15), 2225-2234 (2018).
  19. Behrens, A. M., et al. In situ deposition of PLGA nanofibers via solution blow spinning. ACS Macro Letters. 3 (3), 249-254 (2014).
  20. Vural, M., Behrens, A. M., Ayyub, O. B., Ayoub, J. J., Kofinas, P. Sprayable elastic conductors based on block copolymer silver nanoparticle composites. ACS Nano. 9 (1), 336-344 (2015).
  21. Srinivasan, S., Chhatre, S. S., Mabry, J. M., Cohen, R. E., McKinley, G. H. Solution spraying of poly (methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces. Polymer. 52 (14), 3209-3218 (2011).
  22. Flory, P. J. . Principles of polymer chemistry. , (1953).
  23. Palangetic, L., et al. Dispersity and spinnability: Why highly polydisperse polymer solutions are desirable for electrospinning. Polymer. 55 (19), 4920-4931 (2014).
  24. Ying, Q., Chu, B. Overlap concentration of macromolecules in solution. Macromolecules. 20 (2), 362-366 (1987).
  25. Haro-Pérez, C., Andablo-Reyes, E., Díaz-Leyva, P., Arauz-Lara, J. L. Microrheology of viscoelastic fluids containing light-scattering inclusions. Physical Review E. 75 (4), 041505 (2007).
  26. Thiele, J., et al. Early development drug formulation on a chip: Fabrication of nanoparticles using a microfluidic spray dryer. Lab on a Chip. 11 (14), 2362-2368 (2011).
  27. Zhao, J., Xiong, W., Yu, N., Yang, X. Continuous jetting of alginate microfiber in atmosphere based on a microfluidic chip. Micromachines. 8 (1), 8 (2017).
  28. Jun, Y., Kang, E., Chae, S., Lee, S. H. Microfluidic spinning of micro-and nano-scale fibers for tissue engineering. Lab on a Chip. 14 (13), 2145-2160 (2014).
  29. Weng, B., Xu, F., Salinas, A., Lozano, K. Mass production of carbon nanotube reinforced poly (methyl methacrylate) nonwoven nanofiber mats. Carbon. 75, 217-226 (2014).
  30. Barton, A. F. Solubility parameters. Chemical Reviews. 75 (6), 731-753 (1975).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Solution Blow SpinningPolymeric Nano composite FibersPersonal Protective EquipmentPolymer Molar MassThermodynamically Appropriate SolventsPolymer ConcentrationNano Materials IncorporationCarrier Gas PressureTunable Polymeric FibersBody Armor ApplicationsDry Iron Oxide NanoparticlesDispersion ProcessTetrahydrofuran SolventChemical Fume HoodMechanical Mixing Process

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone