Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Described here is a detailed protocol for performing mitochondrial stress assay and glycolytic rate assay in ex vivo retinal tissue samples using a commercial bioanalyzer.
Mitochondrial respiration is a critical energy-generating pathway in all cells, especially retinal photoreceptors that possess a highly active metabolism. In addition, photoreceptors also exhibit high aerobic glycolysis like cancer cells. Precise measurements of these metabolic activities can provide valuable insights into cellular homeostasis under physiological conditions and in disease states. High throughput microplate-based assays have been developed to measure mitochondrial respiration and various metabolic activities in live cells. However, a vast majority of these are developed for cultured cells and have not been optimized for intact tissue samples and for application ex vivo. Described here is a detailed step-by-step protocol, using microplate-based fluorescence technology, to directly measure oxygen consumption rate (OCR) as an indicator of mitochondrial respiration, as well as extracellular acidification rate (ECAR) as an indicator of glycolysis, in intact ex vivo retinal tissue. This method has been used to successfully assess metabolic activities in adult mouse retina and demonstrate its application in investigating cellular mechanisms of aging and disease.
Mitochondria are essential organelle that regulates cellular metabolism, signaling, homeostasis, and apoptosis by coordinating multiple crucial physiological processes1. Mitochondria serve as the powerhouse in the cell to generate adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) and provide energy that supports almost all cellular events. The majority of cellular oxygen is metabolized in mitochondria, where it serves as the final electron acceptor in the electron transport chain (ETC) during aerobic respiration. Low amounts of ATP can also be produced from glycolysis in the cytosol, where glucose is converted to pyruvate, which can be further converted to lactate or be transported into mitochondria and oxidized to acetyl-CoA, a substrate in the tricarboxylic acid cycle (TCA cycle).
The retina is one of the most metabolically active tissues in mammals2, displaying high levels of mitochondrial respiration and extremely high oxygen consumption3. The rod and cone photoreceptors contain a high density of mitochondria4, and OXPHOS generates most ATP in the retina5. In addition, the retina also relies heavily on aerobic glycolysis6,7 by converting glucose to lactate5. Mitochondrial defects are associated with various neurodegenerative diseases8,9; and with its unique high energy demands, the retina is especially vulnerable to metabolic defects, including those affecting mitochondrial OXPHOS4 and glycolysis10. Mitochondrial dysfunction and defects in glycolysis are implicated in retinal11,12 and macular13 degenerative diseases, age-related macular degeneration10,14,15,16, and diabetic retinopathy17,18. Therefore, accurate measurements of mitochondrial respiration and glycolysis can provide important parameters for assessing the integrity and health of the retina.
Mitochondrial respiration can be measured through the determination of oxygen consumption rate (OCR). Given that the conversion of glucose to pyruvate and subsequently to lactate results in extrusion of protons into and acidification of the extracellular environment, measurements of the extracellular acidification rate (ECAR) provide an indication of glycolysis flux. As the retina is composed of multiple cell types with intimate relationships and active synergy, including the exchange of substrates6, it is imperative to analyze mitochondrial function and metabolism in the context of whole retinal tissue with intact lamination and circuitry. For the past several decades, the Clark type O2 electrodes and other oxygen microelectrodes have been used to measure oxygen consumption in the retina19,20,21. These oxygen electrodes have major limitations in sensitivity, requirement of a large sample volume, and the need for continuous stirring of suspending sample, which usually leads to the disruption of cellular and tissue context. The protocol described here was developed using a microplate-based, fluorescence technique to measure mitochondrial energy metabolism in freshly dissected ex vivo mouse retina tissue. It allows mid-throughput real-time measurements of both OCR and ECAR simultaneously using a small sample (1 mm punch) of ex vivo retinal tissue while avoiding the need for suspension and continuous stirring.
Demonstrated here is the experimental procedure for mitochondrial stress assay and glycolytic rate assay on freshly dissected retinal punch disks. This protocol allows the measurement of mitochondria-related metabolic activities in an ex vivo tissue context. Different from the assays performed using cultured cells, the readings obtained here reflect combined energy metabolism at the tissue level and are influenced by interactions between the different cell types within the tissue. The protocol is modified from a previously published version22,23 to adapt to the new generation of the Agilent Seahorse extracellular flux 24-wells (XFe24) analyzer with Islet Capture plate. The assay medium, injection compound concentrations, and number/duration of assay cycles have also been optimized for retinal tissue. A detailed step-by-step protocol is given for the preparation of retinal punch disks. More information on the program setup and data analysis can be obtained from the manufacturer's user guide24,25,26.
All mouse protocols were approved by the Animal Care and Use Committee of the National Eye Institute (NEI ASP# 650). Mice were housed in 12 h light-dark conditions and cared for by following the recommendations of the Guide for the Care and Use of Laboratory Animals, the Institute of Laboratory Animal Resources, and the Public Health Service Policy on Humane Care and Use of Laboratory Animals.
1. Hydrating sensor cartridge and preparation of the assay medium
2. Coating mesh inserts of islet capture microplate
3. Preparing injection compounds
4. Retinal dissection and retinal punch preparation
5. Loading the sensor cartridge injection ports and calibration
6. Loading the islet capture plate and start assay run
7. Run termination and data storage
8. Saving the retinal punch sample
9. Data analysis
The data reported here are representative mitochondrial stress assay showing OCR trace (Figure 1) and glycolytic rate assay showing OCR trace and ECAR trace (Figure 2), which were performed using freshly dissected 1 mm retinal punch disks from 4 months old transgenic Nrl-L-EGFP mice36 (C57B/L6 background). These mice express GFP specifically in rod photoreceptors without altering normal retinal development, histology, and physiol...
Provided here are detailed instructions for performing microplate-based assays of mitochondrial respiration and glycolysis activity using ex vivo, freshly dissected retinal punch disks. The protocol has been optimized to: 1) ensure the use of a suitable assay medium for ex vivo retinal tissue; 2) employ proper size of retinal punch disks to obtain OCR and ECAR readings that fall within the machine's optimal detecting range; 3) coating mesh inserts to enhance the adhesiveness of retinal punch for sta...
The authors have nothing to disclose.
This work is supported by the Intramural Research Program of the National Eye Institute (ZIAEY000450 and ZIAEY000546).
Name | Company | Catalog Number | Comments |
1X PBS | Thermo Fisher | 14190-144 | |
2-Deoxy glucose (2-DG), 500 mM stock solution | Sigma | D6134 | Dissolve in Seahorse XF DMEM medium, prepare ahead of time |
30-gauge needle | BD Precision Glide | 305106 | |
Antimycin A, 10 mM stock solution | Sigma | A8674 | Dissolve in DMSO, prepare ahead of time |
Bam15, 10 mM stock solution | TimTec | ST056388 | Dissolve in DMSO, prepare ahead of time |
Biopsy puncher, 1 mm | Integra Miltex | 33-31AA | |
Cell-Tak | Corning Life Sciences | CB40240 | |
CO2 asphyxiation chamber | |||
Dissection forceps-Dumont #5 | Fine Science Tools | 11251-10 | Stright tip |
Dissection forceps-Dumont #7 | Fine Science Tools | 11274-20 | Curved tip |
Dissection microscope | |||
DMSO | Sigma | D2438 | |
Graefe forceps | Fine Science Tools | 11051-10 | Curved, Serrated tip |
Microscissors | Fine Science Tools | 15004-08 | Curved tip |
NaOH solution, 1 M | Sigma-Aldrich | S8263 | Aqueous solution, prepare ahead of time |
Rotenone, 10 mM stock solution | Sigma | R8875 | Dissolve in DMSO, prepare ahead of time |
Seahorse calibration medium | Agilent | 100840-000 | |
Seahorse XF 1.0 M glucose | Agilent | 103577-100 | |
Seahorse XF 100 mM pyruvate | Agilent | 103578-100 | |
Seahorse XF 200 mM glutamine | Agilent | 103579-100 | |
Seahorse XF DMEM medium | Agilent | 103575-100 | pH 7.4, with 5 mM HEPES |
Seahorse XFe24 Islet Capture FluxPak | Agilent | 103518-100 | Containing Sensor Cartridge and Islet Capture microplate |
Seahorse XFe24, Extra Cellular Flux Analyzer | Agilent | ||
Sodium bicarbonate solution, 0.1 M | Sigma-Aldrich | S5761 | Aqueous solution, prepare ahead of time |
Superfine eyelash brush | Ted Pella | 113 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone