É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
O pré-tratamento assistido por solventes eutéticos profundos é um processo verde, rápido e eficiente para fracionamento lignocelúsico e recuperação de lignina de alta pureza.
O pré-tratamento ainda é o passo mais caro nos processos biorredistreiristas lignocelulósicos. Deve ser rentável minimizando os requisitos químicos, bem como o consumo de energia e calor e usando solventes favoráveis ao meio ambiente. Os solventes eutéticos profundos (DESs) são solventes-chave, verdes e de baixo custo em biorefinaries sustentáveis. São misturas transparentes caracterizadas por baixos pontos de congelamento resultantes de pelo menos um doador de ligação de hidrogênio e um aceitador de ligação de hidrogênio. Embora os DESs sejam solventes promissores, é necessário combiná-los com uma tecnologia de aquecimento econômico, como a irradiação de micro-ondas, para rentabilidade competitiva. A irradiação de micro-ondas é uma estratégia promissora para encurtar o tempo de aquecimento e aumentar o fracionamento porque pode atingir rapidamente a temperatura apropriada. O objetivo deste estudo foi desenvolver um método rápido de um passo para fracionamento de biomassa e extração de lignina utilizando um solvente de baixo custo e biodegradável.
Neste estudo, foi realizado um pré-tratamento de DES assistido por micro-ondas para 60 s a 800 W, utilizando três tipos de DESs. As misturas DES foram preparadas ácilmente a partir do cloreto de colina (CÍN) e três doadores de ligação de hidrogênio (HBDs): um ácido monocarboxílico (ácido láctico), um ácido dicarboxílico (ácido oxálico) e ureia. Este pré-tratamento foi utilizado para fração de biomassa e recuperação de lignina de resíduos marinhos (folhas de Posidonia e aegagropile), subprodutos agroalimentares (cascas de amêndoas e pomace de oliva), resíduos florestais (pincéis) e gramíneas lignocelulósica perenes(Stipa tenacisima). Foram realizadas análises adicionais para determinar o rendimento, pureza e distribuição de peso molecular da lignina recuperada. Além disso, o efeito dos DESs nos grupos químicos funcionais na lignina extraída foi determinado pela espectroscopia infravermelha de transformação de Fourier (FTIR). Os resultados indicam que a mistura de ácido CHI-oxálico proporciona a maior pureza da lignina e o menor rendimento. O presente estudo demonstra que o processo DES-microondas é uma tecnologia ultrarrápida, eficiente e econômica para fracionamento de biomassa lignocelúsica.
Processos biorredistrais sustentáveis integram o processamento de biomassa, seu fracionamento em moléculas de interesse e sua conversão para produtos de valor agregado1. Na biorefinação de segunda geração, o pré-tratamento é considerado essencial para fracionar a biomassa em seus principais componentes2. Os métodos tradicionais de pré-tratamento utilizando estratégias químicas, físicas ou biológicas têm sido amplamente aplicados3. No entanto, esse pré-tratamento é considerado o passo mais caro na biorefinação e tem outras desvantagens, como tempo de processamento longo, alto consumo de calor e energia e impurezassolventes 4. Recentemente, o DESs, cujas propriedades são semelhantes às dos líquidos iônicos3,surgiram como solventes verdes devido a vantagens como biodegradabilidade, simpatia ambiental, facilidade de síntese e recuperação após o tratamento5.
DESs são misturas de pelo menos um HBD, como ácido láctico, ácido málico ou ácido oxálico, e um aceitador de ligação de hidrogênio (HBA) como betaine ou cloreto de colina (Cínamo)6. As interações HBA-HBD permitem um mecanismo catalítico que permite o decote de ligações químicas, causando fracionamento de biomassa e separação de lignina. Muitos pesquisadores relataram o pré-tratamento baseado no DES de matérias-primas lignocelulósicas, como o ChCl-gliceol na espiga do milho e stover7,8, ChCl-urea, e ácido ChCl-oxálico na palha de trigo9, ácido cítico em serragem de eucalipto 10, e ácido acético chcl11 e glicol de etileno chcl na madeira11. Para melhorar a eficiência do DES, o pré-tratamento deve ser combinado com o tratamento de micro-ondas para acelerar o fracionamento de biomassa5. Muitos pesquisadores relataram tal pré-tratamento combinado (DES e micro-ondas) de madeira8 e de milho stover, switchgrass e Miscanthus5, o que fornece uma nova visão sobre a capacidade de DESs para fracionamento lignocelúsico e extração de lignina em um passo fácil durante um curto período.
A lignina é uma macromolécula fenólica valorizada como matéria-prima para a produção de biopolímeros e apresenta uma alternativa para a produção de produtos químicos como monômeros aromáticos e oligômeros12. Além disso, a lignina possui atividades antioxidantes e de absorção ultravioleta13. Vários estudos relataram aplicações de lignina em produtos cosméticos14,15. Sua integração em produtos de protetor solar comercial melhorou o fator de proteção solar (FPS) do produto de SPF 15 a SPF 30 com a adição de apenas 2 wt % de lignina e até SPF 50 com a adição de 10 wt % lignina16. Este artigo descreve uma abordagem ultrarrápida para o decote lignina-carboidrato, auxiliada pelo pré-tratamento combinado DES-microondas da biomassa mediterrânea. Estas biomassa consistem em subprodutos agroalimentares, particularmente pomace de oliva e cascas de amêndoas. Outras biomassas investigadas foram as de origem marinha (folhas de Posidonia e aegagropile) e aquelas originárias de uma floresta (pinheiros e gramíneas silvestres). O foco deste estudo foi testar solventes verdes de baixo custo para avaliar os efeitos deste pré-tratamento combinado no fracionamento de matérias-primas, investigar sua influência na pureza e rendimento da lignina, e estudar seus efeitos sobre os pesos moleculares e grupos químicos funcionais na lignina extraída.
1. Preparação da biomassa
2. Extração de lignina ultrarrápida assistida por micro-ondas
3. Determinação de pureza da lignina extraída por Klason
4. Teor de nitrogênio na lignina extraída
5. Conteúdo de cinzas em lignina extraída
6. Teor de carboidratos
7. Funções químicas na lignina extraída (infravermelho transformado em Fourier)
8. Peso molecular da lignina extraída (cromatografia de permeação de gel)
9. Tratamento de dados e análises estatísticas
Figura 2A-C retratam o rendimento da lignina de extração das seis matérias-primas, mostrada na Figura 1A-F, após o pré-tratamento combinado microondas-DES. Os resultados mostram que o rendimento da lignina obtido com o DES1 (ácido TC-oxálico) (Figura 2A) foi inferior aos rendimentos obtidos com DES2 (ácido cótico) e DES3 (ChCl-ureia)
Este estudo teve muitos objetivos; O primeiro deles foi preparar e usar solventes verdes de baixo custo com as características de líquidos iônicos e solventes orgânicos. O segundo objetivo foi fracionar a biomassa e extrair lignina em uma única etapa, sem exigir etapas preliminares como a extração de extraíveis utilizando Soxhlet ou hemicellulose utilizando solventes alcalinos, técnicas básicas ou termofísicas. O terceiro objetivo era recuperar a lignina por filtragem simples após o tratamento, sem ajuste de ...
Os autores não relatam conflito de interesses.
MK e TB agradecem a Haitham Ayeb por análises estatísticas e preparação de figuras, Região valão (Desenvolvimento Regional Europeu-VERDIR) e Ministro da Educação Superior e Pesquisa Científica (Taoufik Bettaieb) pelo financiamento.
Name | Company | Catalog Number | Comments |
HPLC Gel Permeation Chromatography | Agilent 1200 series | ||
1 methylimadazole | Acros organics | ||
2-deoxy-D-glucose (internal standard) | Sigma Aldrich (St. Louis, USA) | ||
Acetic acid | Sigma Aldrich (St. Louis, USA) | ||
Acetic anhydride | Sigma Aldrich (St. Louis, USA) | ||
Adjustables pipettors | |||
Alkali | alkali-extracted lignin | ||
Arabinose (99%) | Sigma Aldrich (St. Louis, USA) | ||
Autoclave | CERTO CLAV (Model CV-22-VAC-Pro) | ||
Water Bath at 70 °C | |||
Boric acid | Sigma Aldrich (St. Louis, USA) | ||
Bromocresol | Sigma Aldrich (St. Louis, USA) | ||
Catalyst | CTQ (coded A22) (1.5 g K2SO4 + 0.045 g CuSO4.5 H2O + 0.045 g TiO2) | Merck | |
Centrifugation container | |||
Centrifuge | BECKMAN COULTER | Avanti J-E centrifuge | |
Ceramic crucibles | |||
Choline chloride 99% | Acros organics | ||
Column | Agilent PLGel Mixed C (alpha 3,000 (4.6 × 250 mm, 5 µm) preceded by a guard column (TSK gel alpha guard column 4.6 mm × 50 mm, 5 µm) | ||
Column | HP1-methylsisoxane (30 m, 0.32 mm, 0.25 mm) | ||
Crucible porosity N°4 ( Filtering crucible) | Shott Duran Germany | boro 3.3 | |
Deonized water | |||
Dessicator | |||
Dimethylformamide | VWR BDH Chemicals | ||
Dimethylsulfoxide | Acros organics | ||
Erlenmeyer flask | |||
Ethanol | Merck (Darmstadtt, Germany) | ||
Filtering crucibles, procelain | |||
Filtration flasks | |||
Fourrier Transformed Inra- Red | Vertex 70 Bruker apparatus equipped with an attenuated total reflectance (ATR) module. Spectra were recorded in the 4,000–400 cm−1 range with 32 scans at a resolution of 4.0 cm−1 | ||
Galactose (98% | Sigma Aldrich (St. Louis, USA) | ||
Gaz Chromatography | Agilent (7890 series) | ||
Glass bottle 100 mL | |||
Glass tubes ( borosilicate) with teflon caps 10 mL | |||
Glucose (98% | Sigma Aldrich (St. Louis, USA) | ||
Golves | |||
Graduated cylinder 50 mL /100 mL | |||
H2SO4 Titrisol (0.1 N) | Merck (Darmstadtt, Germany) | ||
H2SO4 (95-98%) | Sigma Aldrich (St. Louis, USA) | BUCHI R-114) | |
Hummer cutter equiped with 1 mm and 0.5 mm sieve | Mill Ttecator (Sweden) | Cyclotec 1093 | |
Indulin | Raw lignin control | ||
Kjeldahl distiller | Kjeltec 2300 (Foss) | ||
Kjeldahl tube | FOSS | ||
Kjeldhal rack | |||
Kjeldhal digester | Kjeltec 2300 (Foss) | ||
Kjeldhal suction system | |||
Lab Chem station Software | GC data analysis | ||
Lactic acid | Merck (Darmstadtt, Germany) | ||
Lithium chloride LiCl | Sigma Aldrich (St. Louis, USA) | ||
Mannose (98%) | Sigma Aldrich (St. Louis, USA) | ||
Methyl red | |||
Microwave | START SYNTH MILESTONE Microwave laboratory system | ||
Microwave temperature probe | |||
Microwave container | |||
Muffle Furnace | |||
NaOH | Merck (Darmstadtt, Germany) | ||
Nitrogen free- paper | |||
Opus | spectroscopy software | ||
Oven | GmbH Memmert SNB100 | Memmert SNB100 | |
Oxalic acid | VWR BDH Chemicals | ||
P 1000 | Soda-processed lignin | ||
pH paper | |||
precision balance | |||
Infrared spectroscopy | |||
Quatz cuvette | |||
Rhamnose (98%) | Sigma Aldrich (St. Louis, USA) | ||
Rotary vacuum evaporator | Bucher | ||
Round-bottom flask 500 mL | |||
sodium borohydride NaBH4 | |||
Schott bottle | glass bottle | ||
Sovirel tubes | sovirel | Borosilicate glass tubes | |
Spatule | |||
Special tube | |||
Spectophotometer | UV-1800 Shimadzu | ||
Sterilization indicator tape | |||
Stir bar in teflon | |||
Stirring plate | |||
Syringes | |||
Sodium borohydride | Sigma Aldrich (St. Louis, USA) | ||
Titrisol | Merck | Merck 109984 | 0.1 N H2SO4 |
Urea | VWR BDH Chemicals | ||
Vials | |||
VolumetriC flask 2.5 L /5 L | Bucher | ||
Vortex | |||
Xylose (98%) | Sigma Aldrich (St. Louis, USA) |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados