Sign In

38.20 : Treatment Resistent Cancers

Cancer is the second leading cause of death in the United States. A cancer cell is genetically unstable and hence can mutate faster. They can also modify their microenvironment and escape immune surveillance. The difficulties in treating cancer are further compounded by the emergence of rapid resistance to anticancer drugs. The most common ways to attain resistance in cancer cells include alteration in drug transport and metabolism, modification of drug target, elevated DNA damage response, or impaired apoptosis.

Origin of resistant cells

Given the heterogeneous nature of the cancer cells, a tumor can have various cancer cell subpopulations, each with distinct genetic fingerprints. Some of these cells may have pre-existing mutations or acquire new mutations that confer them drug resistance. Under therapeutic pressure, cancer cells obey the Darwinian law of evolution, and only the cells that are most adaptive and resistant to treatment survive and multiply to take over other susceptible cancer cell subpopulations.

Models for cancer resistance

Two models are put forward to explain resistance to anticancer drugs. One is the cancer stem cells (CSC) model, and another is the Environment-mediated drug resistance (EMDR) model.

Cancer stem cells or CSCs are quiescent cells with increased DNA repair efficiency, altered cell cycle parameters, or overexpression of anti-apoptotic properties or drug transporters. In this model, drug resistance is mostly caused by the intrinsic or acquired resistance of accumulating CSCs and not all cancer cells within a tumor.

In the Environment-mediated drug resistance (EMDR) model, cancer cells interact with the surrounding environment to enter a quiescent or dormant state to escape the drugs. Inside their protective zone composed of the tumor microenvironment, cancer cells undergo genetic changes until they acquire resistant phenotype. The cells can then relapse once the drug is withdrawn.

Tags
Treatment resistant CancersCancer TreatmentOncologyDrug ResistanceCancer TherapyTherapeutic ChallengesPersonalized MedicineDisease ProgressionClinical Trials

From Chapter 38:

article

Now Playing

38.20 : Treatment Resistent Cancers

Cancer

3.1K Views

article

38.1 : What is Cancer?

Cancer

3.0K Views

article

38.2 : Cancers Originate from Somatic Mutations in a Single Cell

Cancer

1.5K Views

article

38.3 : Tumor Progression

Cancer

2.0K Views

article

38.4 : Adaptive Mechanisms in Cancer Cells

Cancer

2.5K Views

article

38.5 : The Tumor Microenvironment

Cancer

1.9K Views

article

38.6 : Metastasis

Cancer

2.4K Views

article

38.7 : Cancer-Critical Genes I: Proto-oncogenes

Cancer

3.1K Views

article

38.8 : Cancer-Critical Genes II: Tumor Suppressor Genes

Cancer

1.6K Views

article

38.9 : Loss of Tumor Suppressor Gene Functions

Cancer

1.1K Views

article

38.10 : The Retinoblastoma Gene

Cancer

1.6K Views

article

38.11 : Mechanisms of Retrovirus-induced Cancers

Cancer

2.0K Views

article

38.12 : Rous Sarcoma Virus (RSV) and Cancer

Cancer

2.1K Views

article

38.13 : The Ras Gene

Cancer

1.3K Views

article

38.14 : mTOR Signaling and Cancer Progression

Cancer

900 Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved