JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Protocol
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Macrophages play a central role in homeostasis and pathology in many tissues. The protocol presented here describes methods for depleting macrophages in vivo, deriving polarized macrophages from bone marrow aspirates, and adoptively transferring macrophages into mice. These techniques allow determination of the role that polarized macrophages play in health and disease.

Abstract

Macrophages are critical players in the innate immune response to infectious challenge or injury, initiating the innate immune response and directing the acquired immune response. Macrophage dysfunction can lead to an inability to mount an appropriate immune response and as such, has been implicated in many disease processes, including inflammatory bowel diseases. Macrophages display polarized phenotypes that are broadly divided into two categories. Classically activated macrophages, activated by stimulation with IFNγ or LPS, play an essential role in response to bacterial challenge whereas alternatively activated macrophages, activated by IL-4 or IL-13, participate in debris scavenging and tissue remodeling and have been implicated in the resolution phase of inflammation. During an inflammatory response in vivo, macrophages are found amid a complex mixture of infiltrating immune cells and may participate by exacerbating or resolving inflammation. To define the role of macrophages in situ in a whole animal model, it is necessary to examine the effect of depleting macrophages from the complex environment. To ask questions about the role of macrophage phenotype in situ, phenotypically defined polarized macrophages can be derived ex vivo, from bone marrow aspirates and added back to mice, with or without prior depletion of macrophages. In the protocol presented here clodronate-containing liposomes, versus PBS injected controls, were used to deplete colonic macrophages during dextran sodium sulfate (DSS)-induced colitis in mice. In addition, polarized macrophages were derived ex vivo and transferred to mice by intravenous injection. A caveat to this approach is that clodronate-containing liposomes deplete all professional phagocytes, including both dendritic cells and macrophages so to ensure the effect observed by depletion is macrophage-specific, reconstitution of phenotype by adoptive transfer of macrophages is necessary. Systemic macrophage depletion in mice can also be achieved by backcrossing mice onto a CD11b-DTR background, which is an excellent complementary approach. The advantage of clodronate-containing liposome-mediated depletion is that it does not require the time and expense involved in backcrossing mice and it can be used in mice regardless of the background of the mice (C57BL/6, BALB/c, or mixed background).

Protocol

1. Depleting Macrophages Using Clodronate-containing Liposomes

  1. Liposomes are stored at 4 °C. Two hours prior to injection, remove clodronate-containing liposomes, PBS-containing liposomes, or sterile PBS (injection control) from the refrigerator to allow them to acclimate to room temperature (18 °C).
  2. Invert the tubes containing liposomes 8-10 times to ensure an even distribution before loading 200 μl into a 1 ml syringe. Attach a 26 gauge needle to the top of the syringe.
  3. Using your left hand, scruff the mouse just below the ears holding enough skin to immobilize its head and limbs.
  4. Tilt the mouse so its head is slightly towards the ground so internal organs move away from the injection site, which is located in the lower right quadrant of the abdomen.
  5. Roll the syringe between your palms and invert it 6 times to distribute the liposome solution evenly prior to injection.
  6. Insert the needle in the lower right side of the mouse abdomen at a 30-40 degree angle. Inject 200 μl of liposome solution or PBS.
  7. During an induced inflammation model, like DSS-induced colitis, inject mice 4 days prior to onset of experimental inflammation to ensure depletion of resident macrophages and every 2 days during the protocol to deplete new infiltrating macrophages.
  8. At the end of the experiment, along with planned experimental analyses, remove tissues from the site of interest and fix with paraformaldehyde to confirm macrophage depletion by immunohistochemical staining.

2. Derivation of Polarized Macrophages from Bone Marrow Aspirates

  1. Bone marrow from mice between 8 and 12 weeks of age provides the highest yield of bone marrow-derived macrophages. Euthanize the mouse, lay it on its back, and pin down its paws, stretching its limbs as far as possible.
  2. Working in a sterile hood, remove femurs and tibias, cutting away as much muscle as possible.
  3. Flush marrow from bones using IMDM with 10% FCS loaded into a 5 ml syringe fitted with a 26 gauge needle.
  4. Dilute bone marrow aspirates to 40 ml in IMDM with 10% FCS, place cells in a 75 cm2 tissue culture flask, and incubate at 37 °C, 5% CO2 for 4 hours. This step removes adherent mesenchymal cells or mature macrophages from hematopoietic progenitors.
  5. Transfer culture supernatant containing non-adherent progenitors to a 50 ml conical Falcon tube and centrifuge for 5 min at 1200 rpm.
  6. Resuspend cell pellet in 5 ml IMDM, 10% FCS and count nucleated cells by diluting cell suspension 1 in 20 in acetic acid. This procedure lyses all cells including red blood cells and the remaining nuclei can be counted on a hemocytometer.
  7. Resuspend cells at a concentration of 0.5×106 cells/ml in complete medium; IMDM, 10% FCS, 150 μM monothioglycerol (MTG), and 10 ng/ml of either MCSF, GM-CSF, or IL-3. MCSF-derived macrophages are classically activated macrophages whereas GM-CSF- or IL-3-derived macrophages are alternatively activated.
  8. Replace medium at day 4, spinning down non-adherent cells and returning them to the flask, and at day 7, discarding non-adherent cells.
  9. In addition, IFNγ (10 ng/ml) or IL-4 (10 ng/ml) can be added to flasks containing MCSF-derived cells at day 7 to skew macrophages to a classically activated or an alternatively activated phenotype, respectively. Incubate cells for 3 more days.
  10. At day 10, remove media and lift cells off of the tissue culture flask using Cell Dissociation Buffer (Gibco-BRL). Place 5 ml of buffer on cells for 5 min at room temperature (18 °C) and then bang the side of the flask with the heel of your palm firmly several times. Ensure that cells have lifted off of the flask by examining the flask under a microscope. Pipet resuspended cells into a 15 ml conical Falcon tube and wash the flask with an additional 10 ml of IMDM, 10% FBS. Pool and spin down the cells for 5 min at 300×g.
  11. Count viable cells using a hemocytometer and resuspend at a concentration of 107 cells/ml in sterile PBS pH7.4. Macrophages are ready for injection into mice.
  12. Reserve 1.0×106 macrophages for assessment of macrophage phenotype. Classically activated macrophages stimulated with lipopolysaccharide secrete high levels of nitric oxide and IL-12p70 and low levels of IL-10 compared to alternatively activated macrophages. Alternatively activated macrophages constitutively express YM1 and arginase I (ArgI), which can be detected by Western immunoblotting.

3. Tranferring Macrophages into Mice

  1. Resuspend macrophages in sterile PBS at a concentration of 107 cells/ml. This allows for an intravenous injection of 106 macrophages in a total volume of 100 μl, which is a volume that can be safely and comfortably injected into mice by the tail vein.
  2. Warm mice using a heating pad or heat lap for 5-10 min to dilate the tail vein. Monitor the mouse at all times for signs of hyperthermia.
  3. Transfer the mouse to a restraining device that permits access to the tail veins.
  4. Rotate the tail 90° so that the vein is facing upward. Veins run laterally down both sides of the tail and either vein can be used.
  5. Clean the injection site with an alcohol swab and slowly inject 100 μl ( 106 macrophages) using a 1 ml syringe with a 26 or 28 gauge needle. Insert the needle with the bevel side facing up and at a slight angle, almost parallel to the vein.
  6. If the needle is inserted properly no resistance should be felt and the vein should become clear after injection. If the needle is not in the vein, the tail will bulge. If this happens, remove the needle and try again proximal to the last attempt or in the other vein. A new needle must be used for each injection as the tail is tough and the needles become dull quickly during tail vein injection.
  7. Following injection, remove the needle, apply gentle pressure to the injection site until the bleeding stops, and monitor the mouse for an additional 5min to ensure that bleeding has stopped.
  8. Repeat macrophage injections every 4 days to ensure a continuous delivery of polarized macrophages during the experimental procedure.
  9. At the end of the experiment, along with experimental analyses, remove tissues from the site of interest and fix with paraformaldehyde or formalin to confirm effective delivery of polarized macrophages by immunohistochemical staining.

4. Representative Results

The number and phenotype of resident macrophages in any given tissue depends on the tissue being examined and will change during infection or inflammation. Similarly, the ability of clodronate-containing liposomes to deplete macrophages from a tissue will depend on the route of administration and effective delivery to the target tissue. Intraperitoneal injection of clodronate-containing liposomes results in a decrease in F4/80+ macrophages in the mouse colon during DSS-induced colitis evident by immunohistochemical staining for the macrophage marker, F4/80 (Figure 1A). Histological staining can also be used to determine quantitative differences in macrophage number and phenotype in tissue sections. Figure 1B shows that an average of 55% of macrophages is depleted by clodronate-containing liposomes compared to no depletion detected in mouse colons when mice are injected with PBS alone as an injection control. Each value is determined by counting F4/80 and ArgI stained positive cells in serial tissue sections from 6 mice at 3 points, in 3 sections per mouse with counting being performed by two individuals blinded to experimental condition. These results demonstrate that intraperitoneal injections of clodronate liposomes deplete colonic macrophages in mice.

Derivation of macrophages from bone marrow in the presence of different growth factors yields macrophages that are classically activated (MCSF-derived or MCSF-derived and treated with IFNγ) or alternatively activated (GM-CSF or IL-3-derived or MCSF-derived and treated with IL-4). Flushing bone marrow from 2 femurs and 2 tibias from an 8 week old mouse typically yields 6×107 nucleated cells per mouse and yields 8×106 MCSF-derived macrophages, 10×106 GM-CSF-derived macrophages, or 12×106 IL-3-derived macrophages. Figure 2A shows nitrite and the IL-12p70/IL-10 ratio in macrophage supernatants treated with lipopolysaccharide for 24 hours. Figure 2B shows a typical Western blot analysis of 0.5×106 macrophages from MCSF +/- IL-4 derivation conditions probed with antibodies for alternatively activated macrophage markers, ArgI, YM1, or with GAPDH as a loading control. These data demonstrate that bone marrow-derived macrophages can be skewed to a polarized phenotype during derivation.

Effective transfer of ex vivo derived polarized macrophages to a tissue is dependent on the route of administration and access to the tissue. During DSS-induced colitis, macrophages injected intravenously travel to the site of inflammation and alternatively activated macrophages reduce disease severity. Figure 3A shows the total number of macrophages and the number of ArgI+ (alternatively activated) macrophages counted in histological sections from mice injected with polarized bone marrow-derived macrophages. The impact of transfer of polarized macrophages to the colon during DSS-induced colitis is shown by disease activity index, an additive score based on weight loss, rectal bleeding, and decreased stool consistency (Figure 3B). These results demonstrate that ex vivo derived, adoptively transferred macrophages can traffic to the colon and impact induced inflammation. M1 macrophages do not impact inflammation whereas M2 macrophages significantly reduce disease activity index.

figure-protocol-10564
Figure 1. Clodronate-containing liposomes effectively deplete F4/80+ and F480+ArgI+ cells in mouse colons in vivo. An F2 generation of wild type mice on a mixed C57BL/6 ×129Sv background were given 5% DSS for 7 days and injected IP with PBS (Control) or clodronate-containing liposomes (Clodronate) 4 days prior to DSS treatment and on days 0, 2, 4, and 6 during DSS treatment. (A) Colons were removed, fixed, and sections were stained by immunohistochemistry for mature macrophages (F4/80) and the M2 macrophage marker, ArgI. (B) Quantitation of F4/80+ and ArgI+ macrophages. Positively stained cells were counted by two individuals blinded to experimental condition at 40× magnification in 6 fields from 3 sections/mouse and from 6 mice/group. *P<0.01.

figure-protocol-11470
Figure 2. MCSF-derived macrophages express a classically activated phenotype and MCSF-derived macrophages treated with IL-4 express an alternatively activated macrophage phenotype. (A) Consistent with a classically activated phenotype, MCSF-derived macrophages produce higher levels of nitric oxide in response to lipopolysaccharide and can be measured by the Griess assay, which detects its downstream metabolite, nitrite. They also produce a higher IL-12p70/IL-10 ratio, which can be measured by ELISA. *P<0.01 for n=3. (B) Consistent with an alternatively activated phenotype, MCSF-derived macrophages treated with IL-4 constitutively express YM1 and ArgI, which can be detected by Western immunoblotting. Data are representative of 3 independent experiments with similar results.

figure-protocol-12387
Figure 3. Intravenous injected, ex vivo-derived alternatively activated macrophages traffic to the colon and reduce intestinal inflammation. An F2 generation of wild type mice on a mixed C57BL/6 ×129Sv background were given 5% DSS in their drinking water for six days. M1 and M2 macrophages were injected IV on Days 0 and 4 during DSS treatment. (A) Colons were removed, fixed, and sections were stained by immunohistochemistry for mature macrophages (F4/80) and an M2 macrophage marker (ArgI). Quantitation of macrophages for control PBS injected mice (C), mice injected with M1 macrophages (+M1) and mice injected with M2 macrophages (+M2) were performed by counting positively stained cells at 40× magnification in 6 fields from 3 sections/mouse and from 6 mice/group. Counting was performed by two individuals blinded to experimental condition. (B) Disease activity was monitored and scored daily during treatment and is an additive score based on weight loss, rectal bleeding, and decreased stool consistency. *P<0.05 for n= 6 mice in 2 independent experiments.

Access restricted. Please log in or start a trial to view this content.

Discussion

Macrophages are phagocytic cells that play an important role in the immune system. They are responsible for initiating the innate immune response and directing the acquired immune response. Typically, classically activated macrophages are activated by IFNγ or LPS and are responsible for eliminating pathogens and mounting an inflammatory response1. Conversely, alternatively activated macrophages are activated by IL-4 or IL-13 and play a role in debris scavenging and tissue remodeling during the...

Access restricted. Please log in or start a trial to view this content.

Disclosures

No conflicts of interest declared.

Acknowledgements

This work was supported by a 'Grant in Aid of Research' from the Crohn's and Colitis Foundation of Canada to LMS, who is supported by a Canadian Association of Gastroenterology/Canadian Association of Health Research/Crohn's and Colitis Foundation of Canada New Investigator Award.

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
Clodronate-containing liposomesClodronateliposomes.org
PBS-containing liposomesClodronateliposomes.org
Sterile PBS pH7.4 Invitrogen14190
IMDMInvitrogen12440
Fetal Calf Serum (FCS)Invitrogen12483
acetic acidBDH AristarBDH3092-500MLP
Monothioglycerol (MTG)Sigma96-275
Recombinant murine MCSFStemcell Technologies02951
Recombinant murine GM-CSFStemcell Technologies02935
Recombinant murine IL-3Stemcell Technologies02903
Recombinant murine IFNγ Stemcell Technologies02746
Recombinant murine IL-4Stemcell Technologies02714
Cell Dissociation Buffer Invitrogen13150-016
Rat anti-F4/80 AntibodyAbD SerotecMCA497GA
Mouse anti-ArgI AntibodyBD Transduction Laboratories610708

Table 1. Specific reagents used in this protocol.

References

  1. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23-35 (2003).
  2. Rescigno, M., Lopatin, U., Chieppa, M. Interactions among dendritic cells, macrophages, and epithelial cells in the gut: implications for immune tolerance. Curr. Opin. Immunol. 20, 669-675 (2008).
  3. Heinsbroek, S. E., Gordon, S. The role of macrophages in inflammatory bowel diseases. Expert Rev. Mol. Med. 11, e14(2009).
  4. Collins, S. M., Piche, T., Rampal, P. The putative role of inflammation in the irritable bowel syndrome. Gut. 49, 743-745 (2001).
  5. Maeda, S. Colon cancer-derived factors activate NF-kappaB in myeloid cells via TLR2 to link inflammation and tumorigenesis. Mol. Med. Report. 4, 1083-1088 (2011).
  6. van Rooijen, N., van Kesteren-Hendrikx, E. Clodronate liposomes: perspectives in research and therapeutics. J. Liposome Res. 12, 81-94 (2002).
  7. Hunter, M. M. In vitro-derived alternatively activated macrophages reduce colonic inflammation in mice. Gastroenterology. 138, 1395-1405 (2010).
  8. Weisser, S. B. SHIP-deficient, alternatively activated macrophages protect mice during DSS-induced colitis. J. Leukoc. Biol. 90, 483-492 (2011).
  9. Qualls, J. E., Kaplan, A. M., van Rooijen, N., Cohen, D. A. Suppression of experimental colitis by intestinal mononuclear phagocytes. J. Leukoc. Biol. 80, 802-815 (2006).
  10. Van Rooijen, N., Sanders, A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J. Immunol. Methods. 174, 83-93 (1994).
  11. Smith, P. Infection with a helminth parasite prevents experimental colitis via a macrophage-mediated mechanism. J. Immunol. 178, 4557-4566 (2007).
  12. van Rooijen, N., Hendrikx, E. Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol. Biol. 605, 189-203 (2010).
  13. Kataoka, K. The roles of vitreal macrophages and circulating leukocytes in retinal neovascularization. Invest. Ophthalmol. Vis. Sci. 52, 1431-1438 (2011).
  14. Weisser, S. B. Alternative activation of macrophages by IL-4 requires SHIP degradation. Eur. J. Immunol. 41, 1742-1753 (2011).
  15. Cailhier, J. F. Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J. Immunol. 174, 2336-2342 (2005).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

DepletionReconstitutionMacrophagesMiceInnate Immune ResponseAcquired Immune ResponseMacrophage DysfunctionDisease ProcessesInflammatory Bowel DiseasesPolarized PhenotypesClassically Activated MacrophagesAlternatively Activated MacrophagesIFN gammaLPSIL 4IL 13InflammationInflammatory ResponseWhole Animal ModelDepleting MacrophagesComplex EnvironmentPhenotypically Defined Polarized MacrophagesBone Marrow Aspirates

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved