A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Advances in mass spectrometry have allowed the high throughput analysis of protein expression and modification in a host of tissues. Combined with subcellular fractionation and disease models, quantitative mass spectrometry and bioinformatics can reveal new properties in biological systems. The method described herein analyzes chromatin-associated proteins in the setting of heart disease and is readily applicable to other in vivo models of human disease.
In the nucleus reside the proteomes whose functions are most intimately linked with gene regulation. Adult mammalian cardiomyocyte nuclei are unique due to the high percentage of binucleated cells,1 the predominantly heterochromatic state of the DNA, and the non-dividing nature of the cardiomyocyte which renders adult nuclei in a permanent state of interphase.2 Transcriptional regulation during development and disease have been well studied in this organ,3-5 but what remains relatively unexplored is the role played by the nuclear proteins responsible for DNA packaging and expression, and how these proteins control changes in transcriptional programs that occur during disease.6 In the developed world, heart disease is the number one cause of mortality for both men and women.7 Insight on how nuclear proteins cooperate to regulate the progression of this disease is critical for advancing the current treatment options.
Mass spectrometry is the ideal tool for addressing these questions as it allows for an unbiased annotation of the nuclear proteome and relative quantification for how the abundance of these proteins changes with disease. While there have been several proteomic studies for mammalian nuclear protein complexes,8-13 until recently14 there has been only one study examining the cardiac nuclear proteome, and it considered the entire nucleus, rather than exploring the proteome at the level of nuclear sub compartments.15 In large part, this shortage of work is due to the difficulty of isolating cardiac nuclei. Cardiac nuclei occur within a rigid and dense actin-myosin apparatus to which they are connected via multiple extensions from the endoplasmic reticulum, to the extent that myocyte contraction alters their overall shape.16 Additionally, cardiomyocytes are 40% mitochondria by volume17 which necessitates enrichment of the nucleus apart from the other organelles. Here we describe a protocol for cardiac nuclear enrichment and further fractionation into biologically-relevant compartments. Furthermore, we detail methods for label-free quantitative mass spectrometric dissection of these fractions-techniques amenable to in vivo experimentation in various animal models and organ systems where metabolic labeling is not feasible.
The experimental workflow contains seven major steps (Figure 1). For any work involving samples that will be run on the mass spectrometer, the experimenter should wear a lab coat, gloves and hair net and take care to avoid contamination from dust and personal shedding of keratin.
1. Heart Homogenization and Nuclear Isolation
Mouse hearts are homogenized and an intact nuclei pellet is isolated (Figure 2).
2. Nucleoplasm and Detergent-extracted Chromatin Fractionation
The crude nuclei pellet is separated into a nucleoplasm and detergent-extracted chromatin fraction, containing proteins loosely associated with the DNA.
3. Acid-extraction Fractionation - DNA-bound Protein Enrichment
A separate fractionation enriches for proteins tightly bound to the DNA, including histones.
4. Purity Check
Western blots and electron microscopy confirm successful enrichment of nuclei and depletion of other organelles. To see typical results for all of the following quality control assays, please see our previous publication.18
Important considerations for enriching versus purifying nuclei. This protocol was developed to enable proteomic analyses of cardiac chromatin for the purpose of studying global gene regulation processes during disease. A major component of designing whole-proteome mass spectrometry experiments is the issue of dynamic range and being able to identify and characterize low-abundance proteins. In addition to the primary goal of providing information on nuclear and chromatin-specific biology, enriching for the nuclear proteome, increases the likeliness of detecting these low-abundance proteins, as does further subfractionation of the nuclei. However, as discussed, the adult cardiomyocyte has a dense cytoskeletal component connected to the nuclear membrane. We do not believe that we have completely purified the nuclei from these other cellular components. However, by enriching only for the nuclei, we have obtained an acceptable threshold to enable the types of analyses described.
Specifically, we have used EM to assess the purity of our crude nuclei pellet and found 60-80% of the fraction to be intact nuclei, roughly 10% mitochondria, and the rest debris. Additionally, we know from our previous study on the intact nuclei population, that while many myofilaments are not enriched by this protocol (including tubulin and actin as measured by Western) certain proteins (calsarcin-1) are enriched, suggesting a true biological population of these proteins in the cardiac nuclei.19
Additionally, we compared the proteins we found to be present in the acid-extracted chromatin fraction, to the predicted roles of these proteins by gene ontology. Importantly, this gene ontology analysis does not take into account the relative abundance of the different proteins (as does our Western blot data) but rather counts all proteins identified (enriched or not) as equal when identifying common pathways and cellular compartments. Analysis of these pathways and cellular compartments can be found in our previous publications.18,20 Most importantly, the success of the enrichment in the acid-extracted chromatin fraction allowed us to identify the presence of 54 histone variants in the adult mouse myocyte,18 many of which relied on one unique peptide for identification, and thus would likely not have been detectable without this enrichment protocol given the enormous complexity of the total cardiomyocyte proteome. Of the 1,048 proteins we identified from the cardiac nuclei, 56 of them (5.3%) were annotated by GO analysis to be part of the nucleosome (one component of the nucleus of interest). Another study looking at the whole heart, identified 6,180 proteins, of which only 11 proteins (0.18%) were annotated to be part of the nucleosome21. This further illustrates the strength of our protocol to meaningfully enrich for nuclear proteins.
5. Protein Gel and Enzymatic Protein Digest
Proteins are separated by one dimensional SDS-PAGE and trypsin digested to be run on the mass spectrometer.
6. Mass Spectrometry and Data Analysis
Samples are separated on an LC and analyzed by MS/MS. The spectra are searched against a protein database for protein identification.
7. Label-free Quantitation
Determine the relative abundance of proteins using label-free quantitation (Figure 4).
Important considerations for label-free quantitation. When performing label-free quantitation, specific attention must be given to ensure consistent sample preparation, digestion time and LC-MS/MS conditions as each sample must be processed and analyzed separately. In contrast to metabolic labeling approaches, comparisons in label-free experiments are made on data from distinct mass spectrometry runs (because the lack of labeling obviates the possibility of running them together), thereby necessitating high reproducibility in all aspects of sample analysis (i.e. of sample prep, LC and MS steps) and use of high mass accuracy mass spectrometers.
To account for slight changes in sample preparation and analysis a known standard may be added to each sample to assist in normalization of data. Additionally, most software programs allow normalization of signal intensities (e.g. by adjusting to background noise or a known abundant analyte) after data acquisition to account for differences in injection, ionization and fragmentation. Alignment algorithms exist in most of the above-referenced software programs that assist in correcting differences in peptide elution profiles. The use of biological and technical replicates is essential in this type of study, as it allows statistical analyses to confirm the reproducibility and consistency of any observed changes in protein abundance.
Figure 4 highlights the utility of this form of relative quantification. Shown in the left panel are the individual monoisotopic peptide peaks (overlaid from different mice), which have been designated as belonging to the protein HMGB1 (identified via database search). Each peak, essentially an extracted ion chromatograph for the given peptide, comes from a different mouse. The groups represent three different physiological states: basal, cardiac hypertrophy, and heart failure, with three biological repl...
Two main methods for nuclear isolation have been reviewed previously:27 one is the Behrens technique of homogenizing lyophilized tissue in a non-aqueous solvent and the second, a modification of which we use here, of homogenizing tissue in an aqueous sucrose/salt solution followed by differential or density-gradient centrifugation.
Subfractionation of the nuclei by acid extraction on tissue samples is an important tool for studying chromatin which has been used since 1960,28
No conflicts of interest declared.
The Vondriska lab is supported by grants from the National Heart, Lung and Blood Institute of the NIH and the Laubisch Endowment at UCLA. EM is recipient of the Jennifer S. Buchwald Graduate Fellowship in Physiology at UCLA; HC is the recipient of an American Heart Association Pre-doctoral Fellowship; MP is the recipient of an NIH Ruth Kirschstein Post-doctoral Fellowship; and SF is the recipient of an NIH K99 Award.
Name | Company | Catalog Number | Comments |
Dulbeco Modified Eagle Medium | Invitrogen | 11965 | |
Protease pellet | Roche | 04 693 159 001 | |
100 μm strainer | BD Falcon | 352360 | |
Ultracut ultramicrotome | Reichert | ||
100CX Transmission Electron Microscope | JEOL USA, Inc. | ||
Oriole | BioRad | 161-0496 | |
Histone H2A antibody | Santa Cruz | sc-8648 | |
Nucleoporin p62 antibody | BD Biosciences | 610498 | |
Adenine nucleotide transporter antibody | Santa Cruz | sc-9299 | |
BiP antibody | Santa Cruz | sc-1050 | |
Tubulin antibody | Sigma | T1568 | |
Histone H3 antibody | Abcam | ab1791 | |
Fibrillarin antibody | Cell Signaling | C12C3 | |
SNRP70 antibody | Abcam | ab51266 | |
E2F-1 antibody | Thermo Fisher | MS-879 | |
Retinoblastoma antibody | BD Biosciences | 554136 | |
Hypoxia inducible factor-1 antibody | Novus Biologicals | NB100-469 | |
BCA protein assay | Thermo Scientific | 23227 | |
Reverse phase column | New Objective | PFC7515-B14-10 | |
BioWorks Browser | Thermo Scientific |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved