A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The use of a needle injection method to inoculate maize and teosinte plants with the biotrophic pathogen Ustilago maydis is described. The needle injection inoculation method facilitates the controlled delivery of the fungal pathogen in between the plant leaves where the pathogen enters the plant through the formation of appresoria. This method is highly efficient, enabling reproducible inoculations with U. maydis.
Maize is a major cereal crop worldwide. However, susceptibility to biotrophic pathogens is the primary constraint to increasing productivity. U. maydis is a biotrophic fungal pathogen and the causal agent of corn smut on maize. This disease is responsible for significant yield losses of approximately $1.0 billion annually in the U.S.1 Several methods including crop rotation, fungicide application and seed treatments are currently used to control corn smut2. However, host resistance is the only practical method for managing corn smut. Identification of crop plants including maize, wheat, and rice that are resistant to various biotrophic pathogens has significantly decreased yield losses annually3-5. Therefore, the use of a pathogen inoculation method that efficiently and reproducibly delivers the pathogen in between the plant leaves, would facilitate the rapid identification of maize lines that are resistant to U. maydis. As, a first step toward indentifying maize lines that are resistant to U. maydis, a needle injection inoculation method and a resistance reaction screening method was utilized to inoculate maize, teosinte, and maize x teosinte introgression lines with a U. maydis strain and to select resistant plants.
Maize, teosinte and maize x teosinte introgression lines, consisting of about 700 plants, were planted, inoculated with a strain of U. maydis, and screened for resistance. The inoculation and screening methods successfully identified three teosinte lines resistant to U. maydis. Here a detailed needle injection inoculation and resistance reaction screening protocol for maize, teosinte, and maize x teosinte introgression lines is presented. This study demonstrates that needle injection inoculation is an invaluable tool in agriculture that can efficiently deliver U. maydis in between the plant leaves and has provided plant lines that are resistant to U. maydis that can now be combined and tested in breeding programs for improved disease resistance.
Fungal diseases of plants represent one of the most eminent threats to agriculture. The need to develop crops with improved disease resistance is increasing due to the food needs of a growing world population. Plant pathogens naturally infect crop plants in the field causing diseases that negatively impact crop yield6. It has been shown that identifying and utilizing resistant plants can improve resistance and decrease yield loss. Resistant cultivars have been identified in many plant species including maize, wheat, rice, and sorghum by inoculating the plants with a plant pathogen and selecting for resistant lines7. Therefore, development and use of an efficient inoculation method would allow many plants to be inoculated and screened for resistance. Various inoculation methods have been used including dip inoculation, pipetting the pathogen cell suspension culture into the whirl of the plant, and needle injection inoculation8-11. With each method, the pathogen must reliably be introduced in between the plant leaves where the pathogen enters the plant through the formation of appresoria to ensure pathogen development and plant infection12,13.
The dip inoculation method involves submerging a plant seedling into a pathogen cell suspension culture, while the pipetting method requires placing the pathogen cell suspension culture into the whirl of the plant seedling. However, there are issues with both methods. First, both methods depend on the natural movement of the pathogen from the leaf surface into the plant tissue which is highly variable. Most pathogens naturally enter the plant through stomatal openings or wounds on the plant leaf surface. However, there is significant variability in the pathogens ability to penetrate the plant leaf surface through the stomata and/or wounds on the leaf surface. Therefore, pathogen penetration cannot be controlled with either inoculation method potentially resulting in inconsistent data. Second, when screening a large number of plants, submerging the seedlings into a pathogen cell suspension culture can be time consuming and may limit the number of plants that can be screened. Conversely, the needle injection inoculation protocol described herein delivers the pathogen cell suspension culture in between the plant leaves facilitating the formation of appressoria14. The pathogen then utilizes the newly developed appressoria to enter the plant eliminating the pathogen penetration issue. Additionally, the needle injection inoculation protocol provides a range of phenotypes for maize and teosinte plants that have been inoculated with U. maydis and demonstrate good infection. The phenotypes can be used as a marker to determine the best concentration for the pathogen cell suspension culture resulting in consistent plant phenotypes within and between different experiments.
Following plant inoculation with a pathogen cell suspension culture, plants are typically screened to detect a resistant or susceptible phenotype8-11,15. While disease rating scales have being used extensively to screen and classify plant phenotypes, rating scales differ depending on the pathogen being analyzed. Therefore, a disease rating scale protocol establishment for U. maydis and maize interactions can be utilized for similar fungal pathogens16.
The present series of protocols details needle injection inoculation with a U. maydis cell suspension culture and disease resistance reaction screening of maize, teosinte, and maize x teosinte introgression lines. The present protocols are not limited to needle injection inoculation of U. maydis into maize plants but can be utilized for relatively any fungal pathogen and plant species. Therefore, including the details of both methods in the same protocol will enable researchers to directly utilize the protocols for inoculation and screening or to manipulate the original protocols to better fit the pathogen and plant species of interest.
1. Growth of Plant Material
2. Needle Injection Inoculation
Note: Various cell suspension concentrations should be tested when using different pathogen strains to determine the appropriate cell titer needed for inoculation18,19. The given final concentration for the cell suspension culture can be used as a starting point for tittering. The appropriate concentration of the pathogen cell suspension culture should be verified by visualizing the plant phenotypes with good infection (Figures 3A-E).
3. Resistance Reaction Screening
A successful needle injection inoculation can be determined by visualizing the phenotype of the plants inoculated with U. maydis (experimental). The majority of the experimental plants were susceptible to U. maydis infection. The susceptible plants showed very severe disease development demonstrated by stem and basal gall formation with black teliospores (Figures 3D and 3E, Table 2). Several plants were dead after inoculation due to the s...
In this study the needle injection inoculation method used to deliver a strain of U. maydis into the stem of 700 maize and teosinte plants was successful. Additionally, a revised disease resistance rating scale was used to screen the plants and detect pathogen development. As a result of using both methods, plant lines that are resistant to U. maydis were identified among 700 maize and teosinte plants that can now be combined and tested in breeding programs for improved disease resistance.
Authors have nothing to disclose.
We thank Dr. Emir Islamovic for laboratory and greenhouse assistance. We also thank Dr. Sherry Flint-Garcia for providing the maize x teosinte introgression lines.
Name | Company | Catalog Number | Comments |
Seed for plants | Collected from original crosses | ||
Growth chamber | Conviron | PGR14 REACH-IN | |
Planting flats | Hummert International | 14-3385-2 | |
Soil (3 parts pine bark; 1 part peat moss with perlite) | Hummert International | 10-1059-2 | |
Laminar flow hood | Lab Conoco | 70875372 | |
Glycerol stock of pathogen (U. maydis) or fungal pathogen of interest | Stocks were grown from original culture | ||
Sterile loop | Fisher Scientific | S17356A | |
Potato dextrose agar (PDA) plates | Fisher Scientific | R454311 | |
Incubator set to 30 °C | Fisher Scientific | 11-690-650F | |
Sterile toothpicks | Walmart | Purchased from Walmart and sterilized by autoclave | |
Potato dextrose broth (PDB) | Fisher Scientific | ICN1008617 | |
Incubator-shaker set to 30 °C | New Brunswick | 14-278-179 | |
Spectrophotometer | Fisher Scientific | 4001000 | |
U. maydis cell suspension culture (1 x 106 cells/ml) | Grown from glycerol stock as described in the methods | ||
3 ml Syringes | Becton Dickinson | 309606 | |
.457 mm x 1.3 cm Hypodermic needles | Kendall Brands | 8881250321 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved