JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

To improve our knowledge of cellular and molecular neotissue formation, a murine model of the TEVG was recently developed. The grafts were implanted as infrarenal vena cava interposition grafts in C57BL/6 mice. This model achieves similar results to those achieved in our clinical investigation, but over a far shortened time-course.

Abstract

Biodegradable scaffolds seeded with bone marrow mononuclear cells (BMCs) are often used for reconstructive surgery to treat congenital cardiac anomalies. The long-term clinical results showed excellent patency rates, however, with significant incidence of stenosis. To investigate the cellular and molecular mechanisms of vascular neotissue formation and prevent stenosis development in tissue engineered vascular grafts (TEVGs), we developed a mouse model of the graft with approximately 1 mm internal diameter. First, the TEVGs were assembled from biodegradable tubular scaffolds fabricated from a polyglycolic acid nonwoven felt mesh coated with ε-caprolactone and L-lactide copolymer. The scaffolds were then placed in a lyophilizer, vacuumed for 24 hr, and stored in a desiccator until cell seeding. Second, bone marrow was collected from donor mice and mononuclear cells were isolated by density gradient centrifugation. Third, approximately one million cells were seeded on a scaffold and incubated O/N. Finally, the seeded scaffolds were then implanted as infrarenal vena cava interposition grafts in C57BL/6 mice. The implanted grafts demonstrated excellent patency (>90%) without evidence of thromboembolic complications or aneurysmal formation. This murine model will aid us in understanding and quantifying the cellular and molecular mechanisms of neotissue formation in the TEVG.

Introduction

Congenital heart defects are serious conditions that affect nearly 8% of live births in the United States. Approximately 25% of those infants with congenital heart defects or 2.4 per 1,000 live birth, require invasive treatment in the first year of their life1. The most effective treatment for congenital heart disease is reconstructive surgery. Unfortunately, complications arising from the use of currently available vascular conduits are the most significant cause of postoperative morbidity and mortality.

To address this problem, we developed the first tissue engineered vascular grafts (TEVGs) for clinical use2. TEVGs were constructed from biodegradable polyester tubes seeded with autologous bone marrow derived-mononuclear cells (BM-MNCs) and implanted as venous conduits for congenital heart surgery. The results showed excellent patency rates at 1-3 years of follow-up, but with significant incidence of stenosis3,4. It was clear that a better understanding of vascular neotissue formation and the mechanism underlying the development of TEVG stenosis was needed. In order to better understand the development of TEVGs and the mechanism of stenosis development, an ovine model was created5,6. In this model, the TEVGs successfully transformed into living vessels and were similar in both morphology and function of native veins. This use of a large animal model was a good first step in providing important pre-clinical information that aided clinical usage of TEVGs. However, full understanding of the cellular and molecular mechanisms of vascular neotissue formation in TEVGs using large animal models is limited due to limitations in molecular characterization of vascular cell phenotypes due to lack of species specific molecular tools. To overcome these shortcomings, a murine model of TEVGs was developed by reason of the rapid advancement in mouse genetics and their extensive molecular characterization with the added advantage of a shortened time scale.

The murine IVC interposition model faithfully recapitulated the process of neovessel formation that occurs in large animals and humans, but over a much shorter time course6-9. Here, a detailed protocol for small-scale graft manufacturing using biodegradable scaffolds, BM-MNC harvesting and isolation, BM-MNC seeding on scaffold, and graft implantation in a murine model were described.

Access restricted. Please log in or start a trial to view this content.

Protocol

NOTE: All animal procedures were approved by the Nationwide Children's Hospital Institutional Animal Care and Use Committee.

1. Graft Manufacturing

  1. Make the ε-caprolactone and L-lactide copolymer P(LA/CL) solution by adding 100mg P(LA/CL) in 2 ml dioxane under a fume hood. Place the solution on a vortex and mix continuously for 1-1.5 hr to dissolve completely. 
  2. In the meantime, remove a sheet of polyglycolic acid (PGA) felt from the freezer and cut out several 5 x 8 mm sections. Also cut off the tip of a 0.1-10 µl pipette just above the filter.
  3. Insert a 19 G needle (1.5 length) into the distal end of a pipet tip and wrap the PGA felt around the needle using micro forceps.
  4. Carefully push the felt to the distal end of the pipet tip, where the lumen is straighter than the proximal part, using a blunt 18 G needle, while the 19 G needle is inserted into it.
  5. Pipette 40 µl P(CL/LA) solution into the pipette tip from the top. Saturate the PGA felt with the solution. Then push air bubbles out using a pipette dispenser. Repeat this process if needed.
  6. Place grafts in a 50 ml tube and place it in a -80 °C freezer for 20 min. Make sure the head of the needles face downward.
  7. Transfer the tube into a lyophilizer and vacuum for 24 hr. Make sure to open the lid of the tube to have airflow.
  8. Take out the grafts and remove them from the needles. Cut both ends of the graft leaving a ~5 mm section and put them back onto the needles to maintain their shape. Keep the grafts in a desiccator.
  9. Place the scaffold under UV light in a biosafety hood O/N before cell seeding.

2. Bone Marrow Mononuclear Cell Harvesting and Isolation

  1. Euthanize the mice with ketamine/xylazine overdose (ketamine, 200 mg/kg and xylazine, 20 mg/kg).
  2. Remove bones (femurs and tibias) from 3 mice for 10 graft implantations and place in a Petri dish with 10 cc RPMI. Cut both ends of the bones and flush bone marrow using a syringe with a 25 G needle into a new Petri dish with 3 cc RPMI. Collect bone marrow and RPMI solution in a 15 cc tube and wash the petri dish with additional 2 cc RPMI to collect the remainder of BM.
  3. Take sample (5-10 µl) and count cell using an automated cell counter or hemocytometer. Record the result.
  4. Put 5 cc Ficoll in a 15 cc centrifuge tube and add bone marrow and RPMI solution. Add the solution very gently to prevent it from mixing with Ficoll.
  5. Centrifuge at 528 x g for 30 min with "NO BRAKE" at 24 °C.
  6. Remove the upper pink layer. Collect the middle clear layer Figure 1, which is the MNC layer, and dilute it with PBS 1:1.
  7. Centrifuge the dilute MNC solution at 528 x g for 10 min at 24 °C.
  8. Remove the supernatant and dilute the pellet with 5 ml PBS.
  9. Centrifuge the pellet solution at 528 x g for 10 min at 24 °C.
  10. Remove the supernatant. Dilute the pellet with the appropriate volume of RPMI (~200 µl).
  11. Take a 5-10 µl sample and count cells using an automated cell counter or hemocytometer. Record the result. Repeat the cell counting one more time and calculate the average cell number.
  12. Dilute cell concentration to 1,000,000 cells/10 µl using RPMI.

3. Cell Seeding

  1. Prewet scaffold by adding 5 µl RPMI luminally for 5 min, then remove RPMI.
  2. Add 10 µl bone marrow derived mono nuclear cells in RPMI from Step 2.12 to scaffold lumen and wait for 10 min to allow cells to attach onto the scaffold.
  3. Cut a 19 G needle to 1 cm length and put the needle into the lumen of the scaffold to keep the shape of the scaffold. Place the sample in a 24-well plate.
  4. Add 1,000 µl RPMI to each well and incubate O/N in an incubator.

4. Graft Implantation

  1. Autoclave all the surgical tools before the surgery: 1x fine scissors, 3x micro forceps, 2x micro vascular clamps, 1x clamp applying forceps, 1x micro needle holder, 1x spring scissors, 1x retractor.
  2. 6-8 weeks old female C57BL/6 are used as tissue engineered vascular graft recipients. Remove the mouse from its cage and weigh it, then anesthetize through an intraperitoneal injection into the lower right quadrant of the abdomen with a ketamine/xylazine cocktail (ketamine, 100 mg/kg and xylazine, 10 mg/kg). Ketoprofen (5 mg/kg, IP) is used as a pre-anesthesia analgesic.
  3. Check the level of sedation by tale pinching, then clip the abdominal hair. Lubricate the eyes with sterile ophthalmic ointment, and place the mouse in a dorsal recumbence position on a pad. Disinfect the abdomen with betadine and alcohol pads. Cover the mouse with a sterile drape and expose the incision area only.
  4. Make a midline laparotomy incision from below the xyphoid to the suprapubic region, and insert a self-retaining retractor. Wrap the intestines in saline moistened gauze. Bluntly define the infrarenal aorta and vena cava.
  5. Place two micro vascular clamps on both proximal and distal sides of the aorta and vena cava then bluntly separate the aorta from the vena cava Transect the vena cava. If necessary, ligate the abdominal aortic branches with a 10-0 monofilament sutures on tapered needles.
  6. Implant an inferior vena cava interposition graft with proximal and distal end to end anastomoses using a sterile 10-0 suture. Trim the graft, usually 1-2 mm, dependent on the anatomy of the mouse. Secure the graft with one stitch on both proximal and distal ends and start to suture continuously with 4-5 stiches from the other side of the graft. After finishing the front side, flip the clamps and grafts to the other side and suture the back side of the graft. During implantation, flush the graft with heparin solution frequently to prevent acute thrombosis.
  7. Remove the proximal clamp and control the hemorrhage by applying a topical absorbable sterile hemostat agent. When the hemorrhage stops completely, remove the distal clamp and control the hemorrhage the same way. Make sure blood flows through the graft.
  8. Close the abdominal musculature and skin in two layers using a 6-0 black polyamide monofilament suture with included threaded needle.
  9. Inject 0.5 ml saline subcutaneously and place the mouse in a recovery cage on a warming pad until the mouse is fully mobile. Upon recovery, return the mouse to a new cage with paper bedding. Give pain medication (Ibuprofen, 30 mg/kg, drinking water) for 48 hr.

Access restricted. Please log in or start a trial to view this content.

Results

A schematic of TEVG implantation is shown in Figure 1. Bone marrow was harvested from a donor mouse and mono nuclear cells were isolated using density centrifugation and then seeded onto a biodegradable scaffold. The seeded scaffolds were incubated O/N and implanted to a recipient mouse as an inferior vena cava interposition graft.

Figure 2 illustrates the scanning electron microscopy of the PGA-P(CL/LA) scaffold. The internal diameter was approximately 1 mm a...

Access restricted. Please log in or start a trial to view this content.

Discussion

The mouse model of TEVG is a valuable tool to study cellular and molecular mechanisms of neotissue formation and the development of stenosis. The seeded BM-MNC was shown in both histological and SEM images of the seeded cells on the graft11. Cell seeding efficiency was also shown using a DNA assay7. Using this model system we showed that cell seeding reduces the incidence of the development of TEVG stenosis, which was the primary mode of failure in our human clinical trial3. The seeded ce...

Access restricted. Please log in or start a trial to view this content.

Disclosures

 The authors have nothing to disclose.

Acknowledgements

This work was supported, in part, by a grant from the NIH (RO1 HL098228) to CKB.

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
Polyglycolic acid (PGA) feltBiomedical StructuresCustome ordered
Pipet tip, 0.1-10 μl Fisher Sientific02-707-456
Lyophilizer Labconco7070020
RPMI medium 1604Gibco11875-093
Petri dishBD353003
24-well plateCorning3526
15 cc tube BD352096
FicollSigma10831-100mlAlso called 'Histopaque'
DPBSGibco14190-144
Littauer bone cutter 4.5" StraightRobozRS-8480For BM harvesting
Forceps 4.5"RobozRS-8120For BM harvesting
Scissors 4.5"RobozRS-5912For BM harvesting
MicroscopeLeicaM80
C57BL/6J (H-2b), FemaleJackson Laboratories6648-12 weeks
Ketamine hydrochloride injectionHospira Inc.NDC 0409-2053
Xylazine sterile solutionAkorn Inc.NADA# 139-236
KetoprofenFort Dodge Animal HealthNDC 0856-4396-01
IbuprofenPrecisionDoseNDC 68094-494-59
Heparin sodiumSagent PharmaceticalsNDC 25021-400
Saline solution (sterile 0.9% sodium chloride)Hospira Inc.NDC 0409-0138-22
0.9% Sodium chloride injectionHospira Inc.NDC 0409-4888-10
Petrolatum ophthalmic ointmentDechra Veterinary ProductsNDC 17033-211-38
Iodine prep padsTriad Disposables, Inc.NDC 50730-3201-1
Alcohol prep padsMcKesson Corp.NDC 68599-5805-1
Cotton tipped applicatorsFisher Scientific23-400-118
Fine scissorFST14028-10
Micro-adson forcepFST11018-12
Clamp applying forcepFST00072-14
S&T Vascular clampFST00396-01
Spring scissorsFST15008-08
Colibri retractorsFST17000-04
Dumont #5 forcepFST11251-20
Dumont #7 - fine forcepsFST11274-20
Dumont #5/45 forcepsFST11251-35
Tish needle holder/forcepsMicrinsMI1540
Black polyamide monofilament suture, 10-0AROSurgical Instruments CorporationTI638402For suturing the graft
Black polyamide monofilament suture, 6-0AROSurgical InstrumentsSN-1956For musculature and skin closure
Non-woven spongesMcKesson Corp.94442000
Absorbable hemostatEthicon1961
1 ml SyringeBD309659
3 ml SyringeBD309657
10 ml SyringeBD309604
18 G 1.5 in, NeedleBD305190
25 G 1 in, NeedleBD305125
30 G 1 in, NeedleBD305106
Warm water recirculatorGaymarTP-700
Warming padGaymarTP-22G
TrimmerWahl9854-500

References

  1. Heart Association, A. merican Heart Disease and Stroke Statistics—2012 Update. Circulation. 125, (2012).
  2. Shinoka, T., et al. Creation Of Viable Pulmonary Artery Autografts Through Tissue Engineering. The Journal of Thoracic and Cardiovascular Surgery. 115, 536-546 (1998).
  3. Hibino, N., et al. Late-term results of tissue-engineered vascular grafts in humans. The Journal of Thoracic and Cardiovascular Surgery. 139, 431-436 (2010).
  4. Shin'oka, T., et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. The Journal of Thoracic and Cardiovascular Surgery. 129, 1330-1338 (2005).
  5. Brennan, M. P., et al. Tissue-engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann Surg. 248, 370-377 (2008).
  6. Roh, J. D., et al. Construction of an autologous tissue-engineered venous conduit from bone marrow-derived vascular cells: optimization of cell harvest and seeding techniques. Journal of Pediatric Surgery. 42, 198-202 (2007).
  7. Hibino, N., et al. Tissue-engineered vascular grafts form neovessels that arise from regeneration of the adjacent blood vessel. The FASEB Journal. 25, 2731-2739 (2011).
  8. Hibino, N., et al. A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. The FASEB Journal. 25, 4253-4263 (2011).
  9. Naito, Y., et al. Characterization of the Natural History of Extracellular Matrix Production in Tissue-Engineered Vascular Grafts during Neovessel Formation. Cells Tissues Organs. 195, 60-72 (2012).
  10. Naito, Y., et al. Beyond Burst Pressure: Initial Evaluation of the Natural History of the Biaxial Mechanical Properties of Tissue Engineered Vascular Grafts in the Venous Circulation Using a Murine Model. Tissue Eng. Part A. 20, (2013).
  11. Mirensky, T. L., et al. Tissue-engineered vascular grafts: does cell seeding matter. Journal of Pediatric Surgery. 45, 1299-1305 (2010).
  12. Roh, J. D., et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proceedings of the National Academy of Sciences. 107, 4669-4674 (2010).
  13. Mirensky, T. L., et al. Tissue-engineered arterial grafts: long-term results after implantation in a small animal model. Journal of Pediatric Surgery. 44, 1127-1133 (2009).
  14. Lee, Y. U., Naito, Y., Kurobe, H., Breuer, C. K., Humphrey, J. D. Biaxial mechanical properties of the inferior vena cava in C57BL/6 and CB-17 SCID/bg mice. Journal of Biomechanics. 46, 2277-2282 (2013).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords Inferior Vena CavaInterposition GraftMouse ModelBiodegradable ScaffoldBone Marrow Mononuclear CellsTissue Engineered Vascular GraftNeotissue FormationPatencyStenosis

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved