A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here we present protocols that offer a flexible and strategic foundation for virally manipulating oligodendrocyte precursor cells to overexpress proteins of interest in order to specifically interrogate their role in oligodendrocytes via the in vitro model of central nervous system myelination.
Myelination is a complex process that involves both neurons and the myelin forming glial cells, oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS). We use an in vitro myelination assay, an established model for studying CNS myelination in vitro. To do this, oligodendrocyte precursor cells (OPCs) are added to the purified primary rodent dorsal root ganglion (DRG) neurons to form myelinating co-cultures. In order to specifically interrogate the roles that particular proteins expressed by oligodendrocytes exert upon myelination we have developed protocols that selectively transduce OPCs using the lentivirus overexpressing wild type, constitutively active or dominant negative proteins before being seeded onto the DRG neurons. This allows us to specifically interrogate the roles of these oligodendroglial proteins in regulating myelination. The protocols can also be applied in the study of other cell types, thus providing an approach that allows selective manipulation of proteins expressed by a desired cell type, such as oligodendrocytes for the targeted study of signaling and compensation mechanisms. In conclusion, combining the in vitro myelination assay with lentiviral infected OPCs provides a strategic tool for the analysis of molecular mechanisms involved in myelination.
Myelination of axons is crucial for the fast and efficient transmission of action potentials in both the central and peripheral nervous systems. Specialized cells, Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system, wrap around and ensheathe axons in myelin, effectively insulating the nerve and facilitating saltatory conduction1. The process of myelination can be studied in vitro using retinal ganglion neurons2, engineered nanofibers3, or dorsal root ganglion neurons co-cultured with either Schwann cells4 or oligodendrocytes5-7. The in vitro myelination assay is an established model for studying nervous system myelination and it replicates many of the fundamental processes that occur during myelination in vivo5-8. The assay involves the coculture of purified populations of Dorsal Root Ganglion (DRG) neurons, with OPCs (for CNS myelination) or Schwann cells (for PNS myelination). Under specific conditions these myelinating cells ensheathe DRG axons in the ordered, ultra structurally verified, multi-lamellar sheet of insulating plasma membrane that express the same complement of myelin specific proteins present in vivo.
The most commonly used cell model of studying CNS myelination in vitro is the co-cultures of DRG neurons and OPCs, which have been successfully used to study the effect that exogenous factors such as the neurotrophins exert on CNS myelination in vitro5,6. Exogenous factors such as growth factors or small molecule pharmacological inhibitors have been widely used to study the role of signaling pathways in myelination using the DRG-OPC coculture model7,9. However, in the mixed co-culture settings that contain both the neurons and oligodendrocytes, it remained formally possible that either the growth factors or the pharmacological inhibitors could have exerted effects upon both the DRG neurons and oligodendrocytes (OL). This does offer the ability to specifically dissect the roles that the proteins expressed only by DRGs or oligodendroglia exerts upon myelination using this dual cell system. To unequivocally confirm that the signaling pathway in oligodendroglial directly regulates myelination, lentiviral transduction of OPCs, prior to seeding onto DRG neurons for the in vitro myelination assay, has proven to be an elegant way to overexpress both wild-type and mutant proteins, as well as knockdown expression of constitutively expressed proteins by oligodendrocytes. Thus this approach offers an avenue to specifically interrogate and manipulate signaling pathways within oligodendrocytes for studying myelination9,10.
In this paper, we report methods that we have developed to overexpress a protein of interest selectively in oligodendrocytes via a lentiviral approach for studying myelination in vitro. The technique begins with the generation of expression vectors containing the gene of interest, be it in a wild type, constitutively active or dominant negative form which are then subsequently cloned into the pENTR vector (pENTR L1-L2 pENTR4IRES2GFP). This vector (containing the gene of interest), the CMV promotor donor (pENTR L4-R1 pENTR-pDNOR-CMV) and the 2K7 lentivector are combined in an enzyme reaction to produce a 2K7 vector containing CMV promoter, the gene of interest, an internal ribosomal entry site and GFP (Figure 1). This Gateway cloned 2K7 construct combined with the PMD2.G virus envelope and the pBR8.91 virus package can be co-transfected into HEK293T cells to generate lentivirus that can subsequently be used to transduce OPCs. Once infected with the lentivirus the OPCs express a high level of the protein of interest. These OPCs can then be seeded onto DRG neuron cultures and the effect that expression of high levels of the desired protein exerts on myelination can be interrogated. The co-cultures are assessed for myelin protein expression by western blot analysis and visualized for the formation of myelinated axonal segments by immunocytochemistry.
NOTE: All animals used for this study were of mixed sex and bred at the Animal Facilities of the Department of Anatomy & Pathology and The Florey Institute of Neuroscience and Mental Health Research at the University of Melbourne. All animal procedures were approved by Animal Experimentation Ethics Committees at the University of Melbourne.
1. Cloning of 2K7 Lentivector
2. 2K7 Virus Production
NOTE: Day 1:
Vector | Concentration | Volume |
pMDG.2 | 1 µg/µl | 5 µl |
pBR8.91 | 1 µg/µl | 15 µl |
2K7 vector with GFP + gene of interest | 1 µg/µl | 22 µl |
Sterile Polyethylenimine (PEI) | 1 g/L | 500 µl |
DMEM | 2,100 µl |
3. Viral Titer Determination in HEK293T Cells
4. Isolation and Culture of DRGs (Figure 2 steps 1 & 2)
Figure 2: Schematic diagram of the in vitro myelination assay. DRG neurons are dissected from P2-3 rat pups, then purified and cultured over two weeks (1-2). OPCs are purified from P7-9 rat brains using immunopanning (3). OPCs are then infected with lentivirus and cultured for 48 hr (4). OPCs are then seeded onto DRGs, and any growth factors of interest such as BDNF are added (5). Co-cultures are then cultured for 2 weeks to allow OPCs to differentiate and myelinate the axons (6). Finally, co-cultures are either lysed for western blotting or fixed for immunocytochemistry (7).
NOTE: Day 1- 2 days prior to dissection:
5. Isolation and Culture of OPCs (Figure 2 step 3)
NOTE: Day 1- 2 days prior to dissection:
Concentration | for 250 ml | Final concentration | |
EBSS stock | 10x | 25 ml | 1x |
MgSO4 | 100 mM | 2.5 ml | 1 mM |
Glucose | 30% | 3 ml | 0.46% |
EGTA | 0.5 M | 1 ml | 2 mM |
NaHCO3 | 1 M | 6.5 ml | 26 mM |
Bring volume up to 250 ml with deionized water and filter sterilize |
6. Transducing OPCs
7. OPC Seeding for Myelinating Co-cultures (Figure 2, steps 5 and 6)
The flag-tagged extracellular signal-related kinase 1(Flag-Erk1) construct used for lentivirus production is verified by restriction enzyme digest of the constructs used, including both the 2K7 constructs and the packaging and accessory constructs required for virus production (Figure 3).
Figure 3: DNA construct verification. All DNA constructs...
Myelination of axons is a crucial process for the optimal function of both the central and peripheral nervous systems of vertebrates. The generation and maintenance of myelinated axons is a complex and coordinated process involving molecular interactions between neuronal, glial (from Schwann cells or oligodendrocytes) and extra cellular matrix proteins. The significance and applicability of this protocol is that it allows manipulation of proteins in one specific cell type within the mixed co-culture settings. As multiple...
The authors declare that there is no conflict of interest regarding this research.
This work was supported by the Australian National Health and Medical Research Council (NHMRC fellowship #454330 to JX, project grant #628761 to SM and APP1058647 to JX), Multiple Sclerosis Research Australia (MSRA #12070 to JX), the University of Melbourne Research Grant Support Scheme and Melbourne Research CI Fellowship to JX as well as Australia Postgraduate Scholarships to HP and AF. We would like to acknowledge the Operational Infrastructure Scheme of the Department of Innovation, Industry and Regional Development, Victoria Australia.
Name | Company | Catalog Number | Comments |
2K7 lentivector | Kind gift from Dr Suter9 | ||
5-Fluoro-2′-deoxyuridine | Sigma-Aldrich | F0503-100mg | |
Alexa Fluor 488 Goat anti-mouse IgG | Jackson Immunoresearch | 115545205 | |
Alexa Fluor 488 goat anti-rabbit IgG (H+L) | Life Technologies | A11008 | |
Alexa Fluor 594 goat anti-mouse IgG (H+L) | Life Technologies | A11005 | |
Alexa Fluor 594 goat anti-rabbit IgG (H+L) | Life Technologies | A11012 | |
Ampicillin | Sigma-Aldrich | A9518-5G | |
B27 - NeuroCul SM1 Neuronal Supplement | Stem Cell Technologies | 5711 | |
BDNF (Human) | Peprotech | PT450021000 | |
Biotin (d-Biotin) | Sigma Aldrich | B4639 | |
Bradford Reagent | Sigma Aldrich | B6916-500ML | |
BSA | Sigma Aldrich | A4161 | |
Chloramphenicol | Sigma-Aldrich | C0378-100G | |
CNTF | Peprotech | 450-13020 | |
DAKO fluoresence mounting media | DAKO | S302380-2 | |
DMEM, high glucose, pyruvate, no glutamine | Life Technologies | 10313039 | |
DNase | Sigma-Aldrich | D5025-375KU | |
DPBS | Life Technologies | 14190250 | |
DPBS, calcium, magnesium | Life Technologies | 14040182 | |
EBSS | Life Technologies | 14155063 | |
EcoRI-HF | NEB | R3101 | |
Entry vectors for promoter and gene of interest | Generate as per protocols 1-2 | ||
Fetal Bovine Serum | Sigma-Aldrich | 12003C | |
Forskolin | Sigma Aldrich | F6886-50MG | |
Glucose (D-glucose) | Sigma-Aldrich | G7528 | |
Glycerol | Chem Supply | GL010-500M | See stock solutions |
Goat Anti-Mouse IgG | Jackson ImmunoResearch | 115005003 | |
Goat Anti-Mouse IgM | Jackson ImmunoResearch | 115005020 | |
Goat Anti-Rat IgG | Jackson ImmunoResearch | 112005167 | |
Hoechst 33342 | Life Technologies | H3570 | |
Igepal | Sigma Aldrich | I3021-100ML | |
Insulin | Sigma Aldrich | I6634 | |
Kanamycin | Sigma-Aldrich | 60615 | |
Laminin | Life Technologies | 23017015 | |
LB Medium | See stock solutions | ||
LB-Agar | See stock solutions | ||
L-Cysteine | Sigma-Aldrich | C-7477 | |
Leibovitz's L-15 Medium | Life Technologies | 11415064 | |
L-Glutamate | Sigma-Aldrich | G1626 | |
L-Glutamine- 200 mM (100x) liquid | Life Technologies | 25030081 | |
LR Clonase II Plus enzyme | Life Technologies | 12538-120 | |
MEM, NEAA, no Glutamine | Life Technologies | 10370088 | |
Mouse α βIII Tubulin | Promega | G7121 | |
Mouse αMBP (monoclonal) | Millipore | MAB381 | |
Na pyruvate | Life Technologies | 11360-070 | |
NAC | Sigma Aldrich | A8199 | |
NcoI-HF | NEB | R3193S | |
NEBuffer 4 | NEB | B7004S | |
Neurobasal medium | Life Technologies | 21103049 | |
NGF (mouse) | Alomone Labs | N-100 | |
NT-3 | Peprotech | 450-03 | |
O1 antibody - Mouse anti-O1 | Millipore | MAB344 | Alternative if O1 hybridoma cells are unavailable |
O1 hybridoma cells | Conditioned medium containing anti-O1 antibody to be used for immunopanning | ||
O4 antibody - Mouse anti-O4 | Millipore | MAB345 | Alternative if O4 hybridoma cells are unavailable |
O4 hybridoma cells | Conditioned medium containing anti-O4 antibody to be used for immunopanning | ||
Competent cells | Life Technologies | A10460 | |
One Shot Stbl competent cells | Life Technologies | C7373-03 | |
Papain Suspension | Worthington/Cooper | LS003126 | |
pBR8.91 | Kind gift from Dr Denham10 | ||
PDGF-AA (Human) | Peprotech | PT10013A500 | |
Penicillin-streptomycin 100x solution | Life Technologies | 15140122 | |
pENTRY4IRES2GFP | Invitrogen | 11818-010 | |
pMD2.G | Addgene | 12259 | |
Poly-D-lysine | Sigma | P6407-5MG | |
Polyethylenimine (PEI) | Sigma-Aldrich | 408727-100ML | |
Poly-L-ornithine | Sigma Aldrich | P3655 | |
Progesterone | Sigma Aldrich | P8783 | |
Protease inhibitor tablet (Complete mini) | Roche | 11836153001 | |
Proteinase K | Supplied with Clonase enzyme | ||
Putrescine | Sigma Aldrich | P-5780 | |
Rabbit α neurofilament | Millipore | AB1987 | |
Rabbit αMBP (polyclonal) | Millipore | AB980 | |
Ran2 hybridoma cells | ATCC | TIB-119 | Conditioned medium containing anti-Ran2 antibody to be used for immunopanning |
Rat anti CD140A/PDGFRa antibody | BD Pharmingen | 558774 | |
SacII | NEB | R0157 | |
SOC medium | Supplied with competent bacteria | ||
Sodium selenite | Sigma Aldrich | S5261 | |
Spe I | NEB | R0133S | |
T4 DNA Ligase | NEB | M0202S | |
T4 DNA Ligase Buffer | NEB | B0202S | |
TE buffer pH8 | See stock solutions | ||
TNE lysis buffer | |||
Trace Elements B | Cellgro | 99-175-CI | |
Transferrin (apo-Transferrin human) | Sigma-Aldrich | T1147 | |
Triton X-100 | Sigma-Aldrich | T9284 | |
Trypsin | Sigma-Aldrich | T9201-1G | |
Trypsin Inhibitor From Chicken Egg White | Roche | 10109878001 | |
Trypsin-EDTA (1x), phenol red (0.05%) | Life Technologies | 25300-054 | |
Unconjugated Griffonia Simplicifolia Lectin BSL-1 | Vector laboratories | L-1100 | |
Uridine | Sigma-Aldrich | U3003-5G |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved