A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Changes in the intracellular calcium levels in the podocytes are one of the most important means to control the filtration function of glomeruli. Here we explain a high-throughput approach that allows detection of real-time calcium handling and single ion channels activity in the podocytes of the freshly isolated glomeruli.
Podocytes (renal glomerular epithelial cells) are known to regulate glomerular permeability and maintain glomerular structure; a key role for these cells in the pathogenesis of various renal diseases has been established since podocyte injury leads to proteinuria and foot process effacement. It was previously reported that various endogenous agents may cause a dramatic overload in intracellular Ca2+ concentration in podocytes, presumably leading to albuminuria, and this likely occurs via calcium-conducting ion channels. Therefore, it appeared important to study calcium handling in the podocytes both under normal conditions and in various pathological states. However, available experimental approaches have remained somewhat limited to cultured and transfected cells. Although they represent a good basic model for such studies, they are essentially extracted from the native environment of the glomerulus. Here we describe the methodology of studying podocytes as a part of the freshly isolated whole glomerulus. This preparation retains the functional potential of the podocytes, which are still attached to the capillaries; therefore, podocytes remain in the environment that conserves the major parts of the glomeruli filtration apparatus. The present manuscript elaborates on two experimental approaches that allow 1) real-time detection of calcium concentration changes with the help of ratiometric confocal fluorescence microscopy, and 2) the recording of the single ion channels activity in the podocytes of the freshly isolated glomeruli. These methodologies utilize the advantages of the native environment of the glomerulus that enable researchers to resolve acute changes in the intracellular calcium handling in response to applications of various agents, measure basal concentration of calcium within the cells (for instance, to evaluate disease progression), and assess and manipulate calcium conductance at the level of single ion channels.
Kidneys maintain homeostatic balance for various substances and regulate blood volume in a way that determines total blood pressure. Disturbances in the renal filtration, reabsorption or secretion lead to or accompany pathological states, ranging from hyper- or hypotension to end stage renal disease that eventually requires kidney transplantation. The renal filtering unit (glomerulus) consists of three layers – the capillary endothelium, basement membrane and a single-cell layer of epithelial cells – podocytes, which play a major role in the maintenance of the slit-diaphragm integrity and function1. Dysfunction in the permselective glomerular filter causes urinary loss of macromolecules, such as proteinuria. Various agents may affect the structure of the podocytes and their foot processes, which determine the integrity of the glomeruli filtration barrier.
The podocytes are involved in the maintenance of the glomeruli filtration function. It has been established that improper calcium handling by the podocyte leads to cell injury and plays an important role in the progression of various forms of nephropathies2,3. Therefore, development of a model which allows for direct measuring of intracellular calcium concentration changes will be instrumental for studies of podocyte function. Isolated glomeruli were previously used in a numerous studies including measurement of albumin reflection coefficient changes4 and assessment of integral cellular currents in the whole-cell electrophysiological patch-clamp measurements5,6. In the present paper we describe the protocol that allows the researcher to measure intracellular calcium concentration changes in response to applications of pharmacological agents, estimate basal levels of calcium within the cells, and assess individual calcium channels activity. Ratometric calcium concentration measurements and patch-clamp electrophysiology were used to determine changes in the intracellular calcium concentration within the podocyte and channel activity, respectively.
Animal use and welfare should adhere to the NIH Guide for the Care and Use of Laboratory Animals following protocols reviewed and approved by the Institutional Animal Care and Use Committee (IACUC).
1. Kidney Flush
2. Isolation of the Rat Glomeruli
3. Single-channel Patch-clamp Electrophysiology
4. Ratiometric Confocal Fluorescence Measurements of Intracellular Calcium Concentration in the Podocytes
5. Image Analysis for the Calcium Measurements
6. Intracellular Calcium Concentration Calculations Using Fluo-4 Fluorescence Signal
Here we addressed the problem of measuring acute changes in the calcium levels in the podocytes. Figure 1 shows a schematic representation of the experimental protocol designed in order to perform high resolution live fluorescence confocal imaging and single ion channel activity recordings in the podocytes of the freshly isolated rodent glomeruli. Briefly, after the rat is anaesthetized, the kidneys should be flushed with PBS to clear them of blood. Then, the kidneys are excised and decapsulated, and glo...
The approach described here allows for the analysis of calcium handling by the podocytes of the rodent glomeruli. This technique allows application of patch-clamp single channel electrophysiology and fluorescence ratiometric confocal imaging. However, both approaches can be used separately, on their own. The proposed protocol has several relatively simple steps, including 1) kidney flush; 2) isolation of the glomeruli by differential sieving; 3) performing patch-clamp electrophysiological experiments, or incubation of th...
The authors have nothing to disclose.
The authors would like to thank Glen Slocum (Medical College of Wisconsin) and Colleen A. Lavin (Nikon Instruments, Inc.) for excellent technical assistance with microscopy experiments. Gregory Blass is acknowledged for critical proofreading of the manuscript. This research was supported by the National Institutes of Health grant HL108880 and American Diabetes Association grant 1-15-BS-172 (to AS), and the Ben J. Lipps Research Fellowship from the American Society of Nephrology (to DVI).
Name | Company | Catalog Number | Comments |
Fluo4 AM | Life Technologies | F14217 | 500 µl in DMSO |
FuraRed AM | Life Technologies | F-3020 | |
Poly-ʟ-lysine | Sigma-Aldrich | P4707 | |
Pluronic acid | Sigma-Aldrich | F-68 | solution |
Ionomycin | Sigma-Aldrich | I3909-1ML | |
Tube rotator | Miltenyi Biotec GmbH | 130-090-753 | Germany |
Nikon confocal microscope (inverted) | Nikon | Nikon A1R | Laser exitation 488 nm. Emission filters 500-550 nm and 570-620 nm |
Objective | Nikon | Plan Apo 60x/NA 1.4 Oil | |
Cover Glass | Thermo Scientific | 6661B52 | |
High vacuum grease | Dow Corning | Silicone Compound | |
Software | Nikon | Nikon NIS-Elements | |
Recording/perfusion chamber | Warner Instruments | RC-26 | |
Patch clamp amplifier | Molecular Devices | MultiClamp 700B | |
Data acquisition system | Molecular Devices | Digidata 1440A | Axon Digidata® System |
Low pass filter | Warner Instruments | LPF-8 | 8 pole Bessel |
Borosilicate glass capillaries | World Precision Instruments | 1B150F-4 | |
Micropipette puller | Sutter Instrument Co | P-97 | Flaming/Brown type micropipette puller |
Microforge | Narishige | MF-830 | Japan |
Motorized micromanipulator | Sutter Instrument Co | MP-225 | |
Inverted microscope | Nikon | Eclipse Ti | |
Microvibration isolation table | TMC | equipped with Faraday cage | |
Multichannel valve perfusion system | AutoMake Scientific | Valve Bank II | |
Recording/perfusion chamber | Warner Instruments | RC-26 | |
Software | Molecular Devices | pClamp 10.2 | |
Nicardipine | Sigma-Aldrich | N7510 | |
Iberiotoxin | Sigma | I5904-5UG | |
Niflumic acid | Sigma-Aldrich | N0630 | |
DIDS | Sigma-Aldrich | D3514-25MG | |
TEA chloride | Tocris | T2265 | |
RPMI 1640 | Life Technologies | 11835030 | without antibiotics |
BSA | Sigma-Aldrich | A8327 | 30% albumin solution |
Temperature controlled surgical table | MCW core | for rodents | |
Steel sieves: | #100 (150 μm), 140 (106 μm) | ||
Gilson, Inc SIEVE 3 SS FH NO200 | Fisher Sci | 50-871-316 | |
Gilson, Inc SIEVE 3 SS FH NO270 | Fisher Sci | 50-871-318 | |
Gilson, Inc SIEVE 3 SS FH NO400 | Fisher Sci | 50-871-320 | |
mesh 200 | Sigma-Aldrich | s4145 | screen for CD-1 |
Binocular microscope | Nikon | Eclipse TS100 | |
Binocular microscope | Nikon | SMZ745 | |
Syringe pump-based perfusion system | Harvard Apparatus | ||
Polyethylene tubing | Sigma-Aldrich | PE50 | |
Isofluorane anesthesia | ![]() | 911103 | |
Other basic reagents | Sigma-Aldrich |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved