A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Neutrophils are the most abundant type of white blood cells. The isolation of neutrophils from human blood by density gradient separation method and the differentiation of human promyelocytic (HL60) cells along the granulocytic pathway are described here; to test their role on sensitivity of lymphoma cells to anti-lymphoma agents.
Neutrophils are the most abundant (40% to 75%) type of white blood cells and among the first inflammatory cells to migrate towards the site of inflammation. They are key players in the innate immune system and play major roles in cancer biology. Neutrophils have been proposed as key mediators of malignant transformation, tumor progression, angiogenesis and in the modulation of the antitumor immunity; through their release of soluble factors or their interaction with tumor cells. To characterize the specific functions of neutrophils, a fast and reliable method is coveted for in vitro isolation of neutrophils from human blood. Here, a density gradient separation method is demonstrated to isolate neutrophils as well as mononuclear cells from the blood. The procedure consists of layering the density gradient solution such as Ficoll carefully above the diluted blood obtained from patients diagnosed with chronic lymphocytic leukemia (CLL), followed by centrifugation, isolation of mononuclear layer, separation of neutrophils from RBCsby dextran then lysis of residual erythrocytes. This method has been shown to isolate neutrophils ≥ 90 % pure. To mimic the tumor microenvironment, 3-dimensional (3D) experiments were performed using basement membrane matrix such as Matrigel. Given the short half-life of neutrophils in vitro, 3D experiments with fresh human neutrophils cannot be performed. For this reason promyelocytic HL60 cells are differentiated along the granulocytic pathway using the differentiation inducers dimethyl sulfoxide (DMSO) and retinoic acid (RA). The aim of our experiments is to study the role of neutrophils on the sensitivity of lymphoma cells to anti-lymphoma agents. However these methods can be generalized to study the interactions of neutrophils or neutrophil-like cells with a large range of cell types in different situations.
Innate immune cells constitute an essential proportion of the cells within the tumor microenvironment and have been associated with tumor malignancy in patients and animal models of cancer1. Recently, it has become more widely appreciated that chronic immune responses play critical roles in promoting tumor progression, metastasis and resistance to chemotherapies2. Macrophages are important innate immune cells that have been shown to directly regulate tumor cell response to chemotherapy 3,4. However, the role of neutrophils, key players in the innate immune system, in regulating tumor response to anti-cancer treatment is not known. The aims of these protocols are to use a fast and credible method to separate neutrophils from CLL patient's blood samples and to differentiate HL60 cells along the granulocytic pathway in order to study their role in regulating the sensitivity of lymphoma cells to anti-lymphoma agents.
Neutrophils are the most abundant cellular component of the innate immune system in blood 5 and act as a first line of defense against invading microorganisms 6. Neutrophils have an essential role in rising effective innate immune responses in addition to variable effector functions in several pathological conditions 7. Therefore, a fast and credible method to isolate neutrophils from other blood cells, such as density gradient separation method, is required for in vitro studies. Using this method for neutrophil isolation will facilitate further research on neutrophil-mediated immunological functions in vivo and ex vivo.
The ability to obtain pure populations of neutrophils is an important first step for the investigation of patients with immunological diseases 8. Density gradient separation method is an ideal technique in which a high yield of cells is obtained. The method involves the addition of density gradient solution in the bottom of a tube containing diluted human blood followed by centrifugation at 300 g for 35 min without break. The ring of the mononuclear cells appears at the interface and the neutrophils reside below the former. This method have significant advantages with respect to other available methods such as neutrophil isolation kits which are much more expensive9. In addition, isolating neutrophils from human blood by commercial kits using antibodies directed to a surface marker specific for human neutrophils, increase the risk of cell activation or differentiation. Density gradient separation method allows the isolation of neutrophils within a short period of time. Within the same step, mononuclear cells are also separated and recovered. It's a fundamental technique in which a high yield of pure cells is obtained in order to achieve functional integrity.
In order to mimic the tumor microenvironment, 3D experiments were performed. Given the short half-life of neutrophils in vitro, the 3D experiments with fresh human neutrophils are not conclusive. For this reason, promyelocytic (HL60) cells are induced to differentiate into neutrophil-like cells using the differentiation inducers dimethyl sulfoxide (DMSO) and retinoic acid (RA). Using differentiated HL60 cells (HL60diff) will prevent having different responses of neutrophils due to isolation from different donors.
In vitro 3D culture models represent an intermediate stage between in vitro 2D models and in vivo models. In 2D culture, the cells spread on plastic surface forming unnatural cell attachments to deposited proteins that are denatured on this synthetic surface. Conversely, the cells in 3D culture form natural cell-cell attachments since the cells and the extracellular matrix they synthesize are the natural material to which they are attached. For this reason, 3D co-culture models, especially between cancer cells and other cell types, have been very useful for indicating their contribution to tumor growth, angiogenesis, and metastasis. As a result, 3D cultures make the cell culture mimic the physiological conditions that exist in vivo 10.
1. Neutrophil Isolation and Co-culture with Primary Leukemic Cells
NOTE: Procedures were conducted under the approval of Lyon Hospital Ethics committee with all patients signing informed consent.
2. Differentiation of HL60 Cells along the Granulocytic Pathway and Their Coculture with RL Lymphoma B Cells in 3D Model
Density gradient separation method described here provides primary leukemic cells and unstimulated neutrophils isolated from the blood of CLL patients. Figure 1A represents the different blood layers obtained after density gradient centrifugation (from top to bottom: platelets and plasma, white ring represents the mononuclear cells, density gradient solution, granulocytes and erythrocytes). Figure 1B and 1C show the differences in the morphological appear...
Described here, an effective, simple, fast and inexpensive protocol for the isolation of neutrophils from human blood with high purity using density gradient centrifugation approach and within the same step mononuclear cells are also separated and recovered. The isolated cell populations are ≥90% pure.
Several methods are available for neutrophil isolation from human blood. These include similar methods using discontinuous gradients11,12, or using commercial kits for neutrophi...
The authors have nothing to disclose.
This work was supported by the Institute National du Cancer (INCa-DGOS-4664).
Name | Company | Catalog Number | Comments |
RPMI 1640 | Gibco Invitrogen | 21875-034 | |
Fetal bovine serum (FBS) | Gibco Invitrogen | 10270-106 | |
Phosphate-buffered saline (PBS contains calcium and magnesium) | Gibco Invitrogen | 14040-091 | |
N-acetyl-L-alanyl-L-glutamine (L-Glutamine) | Life technologies | 25030-024 | |
Penicillin streptomycin (Pen Strep) | Life technologies | 15140-122 | |
Bruton's tyrosine kinase (Btk) inhibitor (Ibrutinib) | CliniSciences | A3001 | |
Vincristine | EG labo | ||
BD Matrigel basement membrane matrix | BD Biosciences | 354234 | Put at 4 oC overnight (O/N) before the day of the experiment |
Red cell lysis buffer | BD Biosciences | 555899 | |
Ficoll (Pancoll) | PAN Biotech | P04-60500 | |
Dextran | Sigma-Aldrich | D8906 | |
Dimethyl sulfoxide (DMSO) | Sigma-Aldrich | D8418 | |
Retinoic acid | Sigma-Aldrich | R2625 | |
Bovine serum albumin (BSA) | Sigma-Aldrich | A7906 | |
Ethylenediaminetetraacetic acid (EDTA) | Sigma-Aldrich | E5134 | |
Sodium chloride (NaCl) | Euromedex | S3014 | |
Annexing V-FLOUS staining kit | Roche | 11 988 549 001 | |
Kit RAL 555 Modified Giemsa staining kit | Cosmos Biomedical | CB361550-0000 | |
LSRII flow cytometry | BD Biosciences | ||
Cytocentrifuge | Thermo Scientific | ||
Leica DMR-XA microscope | Leica Microsystems | ||
Cellometer Auto T4 Cell Viability Counter | Nexcelom Bioscience |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved