A subscription to JoVE is required to view this content. Sign in or start your free trial.
Macrophages are plastic cells of the hematopoietic system that have a crucial role in protective immunity and homeostasis. In this report, we describe optimized in vitro techniques to phenotypically and functionally characterize graft-infiltrating regulatory macrophages that accumulate in the transplanted organ under tolerogenic conditions.
Macrophage accumulation in transplanted organs has long been recognized as a feature of allograft rejection1. Immunogenic monocytes infiltrate the allograft early after transplantation, mount a graft reactive response against the transplanted organ, and initiate organ rejection2. Recent data suggest that suppressive macrophages facilitate successful long-term transplantation3 and are required for the induction of transplantation tolerance4. This suggests a multidimensional concept of macrophage ontogeny, activation, and function, which demands a new roadmap for the isolation and analysis of macrophage function5. Due to the plasticity of macrophages, it is necessary to provide a methodology to isolate and characterize macrophages, depending on the tissue environment, and to define their functions according to different scenarios. Here, we describe a protocol for immune characterization of graft-infiltrating macrophages and the methods we used to functionally evaluate their capacity to inhibit CD8+ T proliferation and to promote CD4+Foxp3+ Treg expansion in vitro.
This protocol describes in vitro techniques to study the function of tissue-infiltrating macrophages isolated from cardiac allografts, according to their ability to modulate T-cell responses. Widely described in the literature, fluorescent cell-tracking dyes in combination with flow cytometry, are powerful tools to study the suppressive function of specific cell types in vitro and in vivo. Our protocol follows the carboxyfluorescein succinimidyl ester (CFSE) method for monitoring lymphocyte proliferation in vitro.
When a CFSE-labeled cell divides, its progeny acquires half the number of carboxyfluorescein....
In this study, mice are housed in accordance with the United States Department of Agriculture guidelines and the recommendations of the Public Health Service Guide for the Care and Use of Laboratory Animals. All experimental techniques involving animal use were performed in accordance with Institutional Animal Care and Utilization Committee (IACUC)-approved protocols of the Mount Sinai School of Medicine.
1. Media Preparation
The representative results show the gating strategy described in the above protocol. Results also display the analysis of the T-cell proliferation activity after the co-culture with graft-infiltrating macrophages. The in vitro suppressive capacity of macrophage subsets was analyzed in Figure 4. The results indicate that the Ly6CloLy6G- macrophages obtained from tolerized recipients are suppressive. The results also indicate that Ly6Cint.......
This protocol describes the methods we used to immunocharacterize graft-infiltrating myeloid cell subsets in an experimental murine model of heart transplantation, which is also applicable to other tissues in different murine experimental models. Low-pressure cell sorting at 20 psi was the preferred method to isolate a good yield of pure cell subsets. Maintaining the purity of each myeloid subset is critical to establish conclusive results of the suppressive capacity between the different myeloid populations. However, ot.......
The authors have nothing to disclose.
We acknowledge the technical contributions of the Flow Cytometry, Microsurgery, and Bio- repository/Pathology Centers of Research Excellence at Mount Sinai. This work was supported by the COST Action BM1305: Action to Focus and Accelerate Cell Tolerogenic Therapies (A FACTT), the Mount Sinai Recanati/Miller Transplantation Institute developmental funds, Ministerio de Ciencia e Innovacion SAF2013-48834-R and SAF2016-80031-R J.O.
....Name | Company | Catalog Number | Comments |
RPMI 1640 Media | Life Technologies | 11875119 | |
10 % FBS | Life Technologies | 26140-079 | |
1000X 2-mercaptoethanol | Life Technologies | 21985023 | |
100X Pen/Strep | Life Technologies | 15140122 | |
100X L-glutamine | Life Technologies | 25030081 | |
100X Non Esential amino acids | Corning | 25025039 | |
1M HEPES buffer | Corning | 25060CL | |
100mM Sodium Pyruvate | ThermoScientific | SH30239.01 | |
Penicilin/Streptavidyn | ThermoScientific | 15140122 | |
Collagenese A | Roche | 70381322 | |
DPBS (w/o calcium&magnesium) | Corning | 21031CV | |
70 micron Cell strainer | Fisher | 22363548 | |
ACK lysis buffer | Life Technologies | A10492-01 | |
DAPI | Sigma | 32670-5mg-F | |
CFSE-FITC | Invitrogen | C34554 | |
Dynabeads Mouse T cell activator CD3/CD28 | Life Technologies | 11452D | |
96 well U-bottom plate | Corning | 353077 | |
Antibodies: | |||
anti-Ly6C-APC | eBioscience | 175932-80 | |
anti-Ly6G-Pe/Cy7 | Biolegend | 127617 | |
anti-CD11b-Percp/Cy5.5 | eBioscience | 45011282 | |
anti-CD45-APC/Cy7 | eBioscience | 47045182 | |
anti-CD4-APC | eBioscience | 17004181 | |
anti-CD8-P/ Cy7 | eBioscience | 25008181 | |
LSRII Flow Cytometer | BD Bioscience | ||
FACSDiva Software | BD Bioscience | ||
C57BL/6-Foxp3tm1Flv/J | The Jackson Laboratory | 008374 | |
C57BL/6 | The Jackson Laboratory | 000664 | |
Balb/c | The Jackson Laboratory | 000651 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved